scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too, and the change of the lake communities along a gradient of eutrophication is seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species.
Abstract: Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, free-floating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.

615 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a landscape management perspective for conservation biological control in agroecosystems, where most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop-noncrop interface.

615 citations

Book ChapterDOI
01 Jan 2015
TL;DR: In future records of interactions between marine debris and wildlife, it is recommended to focus on standardized data on frequency of occurrence and quantities of debris ingested, to allow more detailed assessments of the deleterious effects of marine debris on individuals and populations.
Abstract: In this review we report new findings concerning interaction between marine debris and wildlife. Deleterious effects and consequences of entanglement, consumption and smothering are highlighted and discussed. The number of species known to have been affected by either entanglement or ingestion of plastic debris has doubled since 1997, from 267 to 557 species among all groups of wildlife. For marine turtles the number of affected species increased from 86 to 100 % (now 7 of 7 species), for marine mammals from 43 to 66 % (now 81 of 123 species) and for seabirds from 44 to 50 % of species (now 203 of 406 species). Strong increases in records were also listed for fish and invertebrates, groups that were previously not considered in detail. In future records of interactions between marine debris and wildlife we recommend to focus on standardized data on frequency of occurrence and quantities of debris ingested. In combination with dedicated impact studies in the wild or experiments, this will allow more detailed assessments of the deleterious effects of marine debris on individuals and populations.

614 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth.
Abstract: Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.

614 citations

Journal ArticleDOI
TL;DR: It is found that similarity between phenotypes reflects biological modules of interacting functionally related genes, including relatedness at the level of protein sequence, protein motifs, functional annotation, and direct protein–protein interaction.
Abstract: A number of large-scale efforts are underway to define the relationships between genes and proteins in various species. But, few attempts have been made to systematically classify all such relationships at the phenotype level. Also, it is unknown whether such a phenotype map would carry biologically meaningful information. We have used text mining to classify over 5000 human phenotypes contained in the Online Mendelian Inheritance in Man database. We find that similarity between phenotypes reflects biological modules of interacting functionally related genes. These similarities are positively correlated with a number of measures of gene function, including relatedness at the level of protein sequence, protein motifs, functional annotation, and direct protein-protein interaction. Phenotype grouping reflects the modular nature of human disease genetics. Thus, phenotype mapping may be used to predict candidate genes for diseases as well as functional relations between genes and proteins. Such predictions will further improve if a unified system of phenotype descriptors is developed. The phenotype similarity data are accessible through a web interface at http://www.cmbi.ru.nl/MimMiner/.

613 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226