scispace - formally typeset
Search or ask a question
Institution

Waseda University

EducationTokyo, Japan
About: Waseda University is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Catalysis & Large Hadron Collider. The organization has 24220 authors who have published 46859 publications receiving 837855 citations. The organization is also known as: Waseda daigaku & Sōdai.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the various chemical, physical, and biological properties of Ag NP fabrication approaches to obtain the various shapes and sizes is presented in this paper, where an overview of different synthetic methods, reducing agents, and stabilizers are presented.
Abstract: Nanostructured materials, especially nanoparticles (NPs), of noble metal NPs such as silver (Ag) have been the focus of research in recent decades because of their distinct physical, chemical, and biological properties. These materials have attracted considerable attention because of their potential applications, such as catalysis, biosensing, drug delivery, and nanodevice fabrication. Previous studies on Ag NPs have clearly demonstrated that their electromagnetic, optical, and catalytic properties are strongly influenced by their shape, size, and size distribution, which can be varied by using different synthetic methods, reducing agents, and stabilizers. The valuable optical properties of Ag NPs have allowed for new approaches in sensing and imaging applications, offering a wide range of detection modes, such as colorimetric, scattering, and surface-enhanced Raman scattering techniques, at extremely low detection limits. Here, an overview of the various chemical, physical, and biological properties of Ag NP fabrication approaches to obtain the various shapes and sizes is presented.

143 citations

Journal ArticleDOI
T. Tanaka1, T. Imai2
TL;DR: This paper reviewed advances in polymer nanodielectrics over the past 50 years, using colloid science, polymer composite technology, and nanotechnology, and concluded that despite rapid progress during the past 10 years, interdisciplinary investigation is needed to yield additional benefit to society.
Abstract: Advances in polymer nanodielectrics over the past 50 years, using colloid science, polymer composite technology, and nanotechnology, are reviewed. Despite rapid progress during the past 10 years, interdisciplinary investigation is needed to yield additional benefit to society.

143 citations

Journal ArticleDOI
TL;DR: In this paper, a relativistic analysis of linear perturbations in the Dvali-Gabadadze-Porrati braneworld is performed, and the authors show that the superhorizon growing mode in the metric and the Galileon perturbation at early times suggest that the background is unstable.
Abstract: A scalar-tensor theory of gravity can be made not only to account for the current cosmic acceleration, but also to satisfy solar-system and laboratory constraints, by introducing a nonlinear derivative interaction for the scalar field. Such an additional scalar degree of freedom is called "Galileon.'' The basic idea is inspired by the Dvali-Gabadadze-Porrati braneworld, but one can construct a ghost-free model that admits a self-accelerating solution. We perform a fully relativistic analysis of linear perturbations in Galileon cosmology. Although the Galileon model can mimic the background evolution of standard Lambda CDM cosmology, the behavior of perturbation is quite different. It is shown that there exists a superhorizon growing mode in the metric and Galileon perturbations at early times, suggesting that the background is unstable. A fine-tuning of the initial condition for the Galileon fluctuation is thus required in order to promote a desirable evolution of perturbations at early times. Assuming the safe initial condition, we then compute the late-time evolution of perturbations and discuss observational implications in Galileon cosmology. In particular, we find anticorrelations in the cross correlation of the integrated Sachs-Wolfe effect and large scale structure, similar to the normal branch of the Dvali-Gabadadze-Porrati model.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the Gregory-Laflamme instability was shown to be triggered by any massless field, and not just gravitational perturbations, and it was shown that the black brane Kerr4×Rp is unstable against this instability.
Abstract: Black branes and strings are generally unstable against a certain sector of gravitational perturbations. This is known as the Gregory-Laflamme instability. It has been recently argued [1], [2] that there exists another general instability affecting many rotating extended black objects. This instability is in a sense universal, in that it is triggered by any massless field, and not just gravitational perturbations. Here we investigate this novel mechanism in detail. For this instability to work, two ingredients are necessary: (i) an ergo-region, which gives rise to superradiant amplification of waves, and (ii) ``bound'' states in the effective potential governing the evolution of the particular mode under study. We show that the black brane Kerr4×Rp is unstable against this mechanism, and we present numerical results for instability timescales for this case. On the other hand, and quite surprisingly, black branes of the form Kerrd×Rp are all stable against this mechanism for d > 4. This is quite an unexpected result, and it stems from the fact that there are no stable circular orbits in higher dimensional black hole spacetimes, or in a wave picture, that there are no bound states in the effective potential. We also show that it is quite easy to simulate this instability in the laboratory with acoustic black branes.

143 citations

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Alice Allafort1, Elisa Antolini2  +212 moreInstitutions (45)
TL;DR: In this article, the authors employed two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma ray properties with the AGN and pulsar populations in 1FGL.
Abstract: The Fermi Large Area Telescope First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of gamma-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit gamma rays, 630 of these sources are "unassociated" (i.e. have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma-ray properties with the AGN and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We discuss multiwavelength results and catalog cross-correlations to date

143 citations


Authors

Showing all 24378 results

NameH-indexPapersCitations
Yusuke Nakamura1792076160313
Yoshio Bando147123480883
Charles Maguire142119795026
Kazunori Kataoka13890870412
Senta Greene134134690697
Intae Yu134137289870
Kohei Yorita131138991177
Wei Xie128128177097
Susumu Kitagawa12580969594
Leon O. Chua12282471612
Jun Kataoka12160354274
S. Youssef12068365110
Katsuhiko Mikoshiba12086662394
Yusuke Yamauchi117100051685
Teruo Okano11747647081
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

University of Tsukuba
79.4K papers, 1.9M citations

94% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Osaka University
185.6K papers, 5.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022237
20212,348
20202,467
20192,368
20182,289