scispace - formally typeset
Search or ask a question

Showing papers by "Washington State University published in 2017"


Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1062 moreInstitutions (115)
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Abstract: We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2^(8.4) _(−6.0)M_⊙ and 19.4^(5.3)_( −5.9)M_⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_(eff) = −0.12^(0.21)_( −0.30). This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880^(450)_(−390) Mpc corresponding to a redshift of z = 0.18^(0.08)_( −0.07) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_g ≤ 7.7 × 10^(−23) eV/c^2. In all cases, we find that GW170104 is consistent with general relativity.

2,569 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1113 moreInstitutions (117)
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Abstract: On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

1,979 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1151 moreInstitutions (125)
TL;DR: In this article, a GW signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13.5%.
Abstract: On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of ${12}_{-2}^{+7}\,{M}_{\odot }$ and ${7}_{-2}^{+2}\,{M}_{\odot }$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source's luminosity distance is ${340}_{-140}^{+140}\,\mathrm{Mpc}$, corresponding to redshift ${0.07}_{-0.03}^{+0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.

1,268 citations


Journal ArticleDOI
TL;DR: Additive manufacturing (AM) is fundamentally different from traditional formative or subtractive manufacturing in that it is the closest to the bottom-up manufacturing where a structure can be built into its designed shape using a "layer-by-layer" approach rather than casting or forming by technologies such as forging or machining as discussed by the authors.

1,124 citations


Journal ArticleDOI
15 Dec 2017-Science
TL;DR: This study demonstrates how atomically dispersed ionic platinum (Pt2+) on ceria (CeO2), which is already thermally stable, can be activated via steam treatment to simultaneously achieve the goals of low-temperature carbon monoxide (CO) oxidation activity while providing outstanding hydrothermal stability.
Abstract: To improve fuel efficiency, advanced combustion engines are being designed to minimize the amount of heat wasted in the exhaust. Hence, future generations of catalysts must perform at temperatures that are 100°C lower than current exhaust-treatment catalysts. Achieving low-temperature activity, while surviving the harsh conditions encountered at high engine loads, remains a formidable challenge. In this study, we demonstrate how atomically dispersed ionic platinum (Pt2+) on ceria (CeO2), which is already thermally stable, can be activated via steam treatment (at 750°C) to simultaneously achieve the goals of low-temperature carbon monoxide (CO) oxidation activity while providing outstanding hydrothermal stability. A new type of active site is created on CeO2 in the vicinity of Pt2+, which provides the improved reactivity. These active sites are stable up to 800°C in oxidizing environments.

1,003 citations


Journal ArticleDOI
TL;DR: This Review introduces innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid).
Abstract: Recent years have witnessed a dramatic increase in the production of sustainable and renewable energy However, the electrochemical performances of the various systems are limited, and there is an intensive search for highly efficient electrocatalysts by more rational control over the size, shape, composition, and structure Of particular interest are the studies on single-atom catalysts (SACs), which have sparked new interests in electrocatalysis because of their high catalytic activity, stability, selectivity, and 100 % atom utilization In this Review, we introduce innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid) The electrocatalytic performance is further considered at an atomic level and the underlying mechanisms are discussed The ultimate goal is the tailoring of single atoms for electrochemical applications

909 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1319 moreInstitutions (78)
02 Nov 2017-Nature
TL;DR: A measurement of the Hubble constant is reported that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data.
Abstract: On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source4, 5, 6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8, 9, 10, 11, 12, 13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’14, 15, 16, 17, 18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20, 21, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

892 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +719 moreInstitutions (86)
Abstract: The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

Journal ArticleDOI
TL;DR: This survey article enumerates, categorizes, and compares many of the methods that have been proposed to detect change points in time series, and presents some grand challenges for the community to consider.
Abstract: Change points are abrupt variations in time series data. Such abrupt changes may represent transitions that occur between states. Detection of change points is useful in modelling and prediction of time series and is found in application areas such as medical condition monitoring, climate change detection, speech and image analysis, and human activity analysis. This survey article enumerates, categorizes, and compares many of the methods that have been proposed to detect change points in time series. The methods examined include both supervised and unsupervised algorithms that have been introduced and evaluated. We introduce several criteria to compare the algorithms. Finally, we present some grand challenges for the community to consider.

Journal ArticleDOI
TL;DR: First-principles calculations are employed to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations.
Abstract: Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In2Se3and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization.

Journal ArticleDOI
TL;DR: This survey discusses clear motivations and advantages of multi-sensor data fusion and particularly focuses on physical activity recognition, aiming at providing a systematic categorization and common comparison framework of the literature, by identifying distinctive properties and parameters affecting data fusion design choices at different levels.

Journal ArticleDOI
08 Jun 2017-PLOS ONE
TL;DR: The results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma, and the latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
Abstract: Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic ...

Journal ArticleDOI
TL;DR: A review of recent advances in polymeric materials from vegetable oils in terms of preparation, characterization, and properties can be found in this article, where nano-composites and fiber reinforced composites based on bio-polymers matrices are reviewed.

Book ChapterDOI
05 Jul 2017
TL;DR: The literature on deterrence theory has undergone a number of changes in recent years as mentioned in this paper with the rise of new ways of thinking about rational decision-making and offending, and four developments have changed the way criminologists view the deterrence perspective: the effectiveness of certain situational crime prevention strategies; the recognition of the importance of the "non-legal costs" of criminal behavior; the integration of deterrence theory with other criminological perspectives, such as social learning and self-control theories; and how the imposition of sanctions can actually lower individuals' perceived estimates of getting caught in the future, known
Abstract: The literature on deterrence theory has undergone a number of changes in recent years. With the rise of new ways of thinking about rational decision-making and offending, four developments have changed the way criminologists view the deterrence perspective: the effectiveness of certain situational crime prevention strategies; the recognition of the importance of the "non-legal costs" of criminal behavior; the integration of deterrence theory with other criminological perspectives, such as social learning and self-control theories; and how the imposition of sanctions can actually lower individuals' perceived estimates of getting caught in the future, known as the "resetting effect". The body of "shaming" research points to the growing recognition of the complex effects that criminal sanctions have on individuals' future criminal behaviour. Even independent of shame, however, research has emerged indicating that individuals who have been punished end up being more inclined to commit future offenses than those who have not been punished.

Journal ArticleDOI
TL;DR: In this paper, the effects of foreign direct investment (FDI) and income on pollution emissions were examined using time series data from 1980 to 2010 for 14 Latin American countries, specifically, the validity of Pollution Haven Hypothesis and Environmental Kuznets Curve (EKC) hypothesis for this region.

Journal ArticleDOI
TL;DR: This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Abstract: Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper shows how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination the authors call SPIDEr), which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.
Abstract: Current image captioning methods are usually trained via maximum likelihood estimation. However, the log-likelihood score of a caption does not correlate well with human assessments of quality. Standard syntactic evaluation metrics, such as BLEU, METEOR and ROUGE, are also not well correlated. The newer SPICE and CIDEr metrics are better correlated, but have traditionally been hard to optimize for. In this paper, we show how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination we call SPIDEr): the SPICE score ensures our captions are semantically faithful to the image, while CIDEr score ensures our captions are syntactically fluent. The PG method we propose improves on the prior MIXER approach, by using Monte Carlo rollouts instead of mixing MLE training with PG. We show empirically that our algorithm leads to easier optimization and improved results compared to MIXER. Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.

Journal ArticleDOI
TL;DR: In this paper, a cobalt-based bimetallic transition metal phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction.
Abstract: Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.

Journal ArticleDOI
TL;DR: A number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils are proposed and the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses are outlined.
Abstract: Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8)...

Journal ArticleDOI
TL;DR: This is the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors.
Abstract: Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer ‘growing seasons’. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Richard J. Abbott2, T. D. Abbott3  +1064 moreInstitutions (117)
TL;DR: This work performs a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run, and constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence.
Abstract: A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω 0 < 1.7 × 10 − 7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20–86 Hz). This is a factor of ∼ 33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

Journal ArticleDOI
TL;DR: In this paper, a review of metal-organic frameworks (MOFs) and their applications in ORR electrocatalysis is presented and a perspective for future development of MOFs and their derivatives as catalysts for ORR is discussed.
Abstract: By virtue of diverse structures and tunable properties, metal-organic frameworks (MOFs) have presented extensive applications including gas capture, energy storage, and catalysis. Recently, synthesis of MOFs and their derived nanomaterials provide an opportunity to obtain competent oxygen reduction reaction (ORR) electrocatalysts due to their large surface area, controllable composition and pore structure. This review starts with the introduction of MOFs and current challenges of ORR, followed by the discussion of MOF-based non-precious metal nanocatalysts (metal-free and metal/metal oxide-based carbonaceous materials) and their application in ORR electrocatalysis. Current issues in MOF-derived ORR catalysts and some corresponding strategies in terms of composition and morphology to enhance their electrocatalytic performance are highlighted. In the last section, a perspective for future development of MOFs and their derivatives as catalysts for ORR is discussed.

Journal ArticleDOI
TL;DR: In this paper, a unique eugenol-derived epoxy (Eu-EP) is synthesized, and then vitrimeric materials are prepared by reacting EuEP with succinic anhydride (SA) at various ratios (1: 0.5, 1:0.75, and 1:1) in the presence of zinc-containing catalysts.
Abstract: Conventional epoxy polymers are constructed by petro-based resources that are toxic and nonrenewable, and their permanent cross-links make them difficult to be reprocessed, reshaped, and recycled. In this study, a unique eugenol-derived epoxy (Eu-EP) is synthesized, and then vitrimeric materials are prepared by reacting Eu-EP with succinic anhydride (SA) at various ratios (1:0.5, 1:0.75, and 1:1) in the presence of zinc-containing catalysts. All vitrimers exhibit excellent shape changing, crack healing, and shape memory properties. Although vitrimers with 1:0.75 and 1:1 ratios cannot be physically reprocessed, they can be well reprocessed by the chemical method of being simply decomposed in a benign ethanol solution without loading additional catalyst. The collected decomposed polymers can form vitrimers again after exposure at 190 °C for 3 h. This work combines the concepts of vitrimer preparation, chemical recycling, and biobased polymer together, which would bring a feasible way to satisfy the demands ...

Journal ArticleDOI
TL;DR: In this article, the authors conducted a meta-analysis of the effects of practice tests versus non-testing learning conditions and found that practice tests are more beneficial for learning than restudying and all other comparison conditions.
Abstract: The testing effect is a well-known concept referring to gains in learning and retention that can occur when students take a practice test on studied material before taking a final test on the same material. Research demonstrates that students who take practice tests often outperform students in nontesting learning conditions such as restudying, practice, filler activities, or no presentation of the material. However, evidence-based meta-analysis is needed to develop a comprehensive understanding of the conditions under which practice tests enhance or inhibit learning. This meta-analysis fills this gap by examining the effects of practice tests versus nontesting learning conditions. Results reveal that practice tests are more beneficial for learning than restudying and all other comparison conditions. Mean effect sizes were moderated by the features of practice tests, participant and study characteristics, outcome constructs, and methodological features of the studies. Findings may guide the use of practic...


Journal ArticleDOI
TL;DR: The cellular toxicity on H1299 cancer cells indicates that the NCDs have negligible cytotoxicity, excellent biocompatibility, and great resistance to photobleaching.
Abstract: Inspired by the diverse drug compounds with various heteroatoms (such as N, S, and P) in the drug library, facile synthesis of a new kind of bright and color-tunable N-doped carbon dots (NCDs) has been reported by using a popular antibiotic—aminosalicylic acid—as precursor. The N doping of CDs not only enable great improvement of photoluminescence (PL) efficiency and tunability of PL emission, but also enrich surface functional groups to broaden its application. The as-prepared NCDs possess tunable PL and show a quantum yield of 16.4%, which is the result of PL improvement effect of introduced nitrogen atoms among CDs. The cellular toxicity on H1299 cancer cells indicates that the NCDs have negligible cytotoxicity, excellent biocompatibility, and great resistance to photobleaching. Moreover, the drug-derived NCDs showed excellent sensitivity in detection of Fe3+ in living cells, which indicates the potential application in diagnosis and related biological study.

Journal ArticleDOI
TL;DR: Anxiety and depressive symptoms were highest among adolescents with a relatively high number of parent-reported social media accounts and relatively high FoMO, as well as adolescent-reported fear of missing out (FoMO) and loneliness.