scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
26 Oct 2006-Nature
TL;DR: The genome sequence of the honeybee Apis mellifera is reported, suggesting a novel African origin for the species A. melliferA and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Abstract: Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.

1,673 citations

Journal ArticleDOI
TL;DR: The goal of the World Cancer Report 2014 was to present a timely update on the state of knowledge related to cancer statistics, causes, and mechanisms and how this knowledge might be used for cancer prevention and early detection.

1,666 citations

Journal ArticleDOI
01 Jan 2001-Proteins
TL;DR: The Swiss Protein database of sequences exhibits significantly higher amounts of both low‐complexity and predicted‐to‐be‐disordered segments as compared to a non‐redundant set of sequences from the Protein Data Bank, providing additional data that nature is richer in disordered and low-complexity segments compared to the commonness of these features in the set of structurally characterized proteins.
Abstract: Intrinsic disorder refers to segments or to whole proteins that fail to self-fold into fixed 3D structure, with such disorder sometimes existing in the native state. Here we report data on the relationships among intrinsic disorder, sequence complexity as measured by Shannon's entropy, and amino acid composition. Intrinsic disorder identified in protein crystal structures, and by nuclear magnetic resonance, circular dichroism, and prediction from amino acid sequence, all exhibit similar complexity distributions that are shifted to lower values compared to, but significantly overlapping with, the distribution for ordered proteins. Compared to sequences from ordered proteins, these variously characterized intrinsically disordered segments and proteins, and also a collection of low-complexity sequences, typically have obviously higher levels of protein-specific subsets of the following amino acids: R, K, E, P, and S, and lower levels of subsets of the following: C, W, Y, I, and V. The Swiss Protein database of sequences exhibits significantly higher amounts of both low-complexity and predicted-to-be-disordered segments as compared to a non-redundant set of sequences from the Protein Data Bank, providing additional data that nature is richer in disordered and low-complexity segments compared to the commonness of these features in the set of structurally characterized proteins.

1,658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors put forth a call for papers on the study of institutional theory and institutional change, and they received over 75 manuscripts for review, with a focus on institutional change.
Abstract: Institutional theory has risen to prominence as a popular and powerful explanation for both individual and organizational action. It is a vibrant theory that has heen synthesized and contrasted with a number of other approaches. Although its scope has certainly heen expanded, institutional theory has often been criticized as largely being used to explain hoth the persistence and the homogeneity of phenomena. We helieve that this focus did little to tap the full power or potential of institutional theory. We find, for example, that institutions change over time, are not ttniformly taken-forgranted, have effects that are particularistic, and are challenged as well as hotly contested. Thus, we acknowledge that although institutions serve both to powerfully drive change and to shape the nature of change across levels and contexts, they also themselves change in character and potency over time. It was in this spirit that we put forth a call for papers on the study of institutional theory and institutional change. We also believed that the topic of institutional change has emerged as a central focus for organizational researchers. Therefore, we sought to provide new understandings of the manner in which institutions are created, transformed, and extinguished and the way in which institutional processes interact to affect institutional change. We received over 75 manuscripts for review. In-

1,637 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370