scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that grain hardness results from puroindoline-b functionality such that the Hardness gene is a direct manifestation of p Kuroindoline structure.
Abstract: The quantitative level of friabilin 15-kDa protein present on the surface of water-washed starch is highly correlated with wheat grain softness. Friabilin is composed primarily, if not exclusively, of the proteins puroindoline a and b. The transcript levels of these two proteins are similar among hard and soft wheat varieties, and the expression of both is controlled by the short arm of chromosome 5D, also the chromosomal location of the Hardness gene. We report here a glycine to serine sequence change in puroindoline b associated with hard grain texture. This amino acid change results from a single nucleotide mutation and resides in a region thought to be important for the lipid-binding properties of puroindolines. No recombination was observed between the serine puroindoline-b mutation, hard grain texture and low levels of starch surface friabilin among a set of 83 homozygous 5D recombinant lines derived from the soft-textured variety ‘Chinese Spring’ and the substitution line ‘Chinese Spring’ containing the 5D chromosome of the hard-textured variety ‘Cheyenne’. The sequence change reported here may adversely affect the lipid-binding properties of puroindoline-b and so effect hard grain texture. The results suggest that grain hardness results from puroindoline-b functionality such that the Hardness gene is a direct manifestation of puroindoline structure. We are suggesting the tentative molecular marker loci designations of Pinb-D1a and Pinb-D1b for the glycine and serine puroindoline-b types, respectively.

355 citations

Journal ArticleDOI
12 Sep 2008-Science
TL;DR: Within an aphid-parasitoid-radish community, a fully factorial manipulation of consumer resource-use breadth and species diversity was created and it was found that resource exploitation improved with greater specialist, but not generalist, diversity.
Abstract: Classical ecological theory suggests that the coexistence of consumer species is fostered by resource-use differences, leading to greater resource use in communities with more species. However, explicit empirical support for this idea is lacking, because resource use by species is generally confounded with other species-specific attributes. We overcame this obstacle by co-opting behavioral plasticity in food choice among a group of animal consumers, allowing us to manipulate patterns of resource use while controlling for the effects of species identity and diversity. Within an aphid-parasitoid-radish community, we created a fully factorial manipulation of consumer resource-use breadth (specialist versus generalist) and species diversity (one versus three species) and found that resource exploitation improved with greater specialist, but not generalist, diversity. Therefore, resource partitioning, and not diversity per se, fostered greater overall resource consumption in our multispecies consumer communities.

355 citations

Journal ArticleDOI
TL;DR: In this article, the mass fraction of volatiles, oxygen and the ratios of oxygen to carbon and hydrogen to carbon decreased linearly with pyrolysis temperature and the changes in surface charge were studied by ζ-potential measurements and were found to vary directly with the content of oxygenated functional groups.
Abstract: Eighteen biochar samples were produced from the pyrolysis of Douglas fir wood (DFW), Douglas fir bark (DFB), and hybrid poplar wood (HP) at six temperatures (623, 673, 723, 773, 823 and 873 K) in a lab scale spoon reactor. Changes in the bulk composition of the biochar produced were examined by elemental and proximate analyses. The mass fraction of volatiles, oxygen and the ratios of oxygen to carbon (O/C) and hydrogen to carbon (H/C) decreased linearly with pyrolysis temperature. Surface properties of all the biochars produced (SEM morphology, CO 2 and N 2 adsorption, XPS analysis, Boehm titration, cation exchange capacity (CEC) and ζ-potential) were also studied. The removal of volatiles resulted in the gradual creation of microporosity detectable by CO 2 adsorption but which was difficult to detect with N 2 adsorption, suggesting that the chars contain micropores mostly less than 1 nm in entrance dimension. The XPS and Boehm titration confirmed that most oxygenated surface functional groups (presence of carbonyl, carboxyl and hydroxyl groups) are gradually removed as pyrolysis temperature increases. The changes in surface charge were studied by ζ-potential measurements and were found to vary directly with the content of oxygenated functional groups. Properties that depend on both surface area and the surface oxygenated functional groups, such as the cation exchange capacity, showed a more complex behavior. The composition of the ash and associated properties such as pH and electric conductivity (EC) were also measured. The total alkaline content increases with pyrolysis temperature leading to higher pHs and ECs.

355 citations

Journal ArticleDOI
TL;DR: This major expansion of cancer mutation data sets has provided unprecedented statistical power for the analysis of mutation spectra, which has confirmed several classical sources of mutation in cancer, highlighted new prominent mutation sources and empowered the search for cancer drivers.
Abstract: Recent analyses of cancer genomes have revealed the occurrence of mutation patterns, which indicate their source. This Review discusses what we have learned, and what is yet to learn, from these data and how our current understanding of cancer mutations fits into our understanding of tumorigenesis and tumour progression.

355 citations

Journal ArticleDOI
TL;DR: It is concluded that Iha is a novel bacterial adherence-conferring protein and is contained within an E. coli chromosomal island of conserved structure.
Abstract: The mechanisms used by Shiga toxin (Stx)-producing Escherichia coli to adhere to epithelial cells are incompletely understood. Two cosmids from an E. coli O157:H7 DNA library contain an adherence-conferring chromosomal gene encoding a protein similar to iron-regulated gene A (IrgA) of Vibrio cholerae (M. B. Goldberg, S. A. Boyko, J. R. Butterton, J. A. Stoebner, S. M. Payne, and S. B. Calderwood, Mol. Microbiol. 6:2407-2418, 1992). We have termed the product of this gene the IrgA homologue adhesin (Iha), which is encoded by iha. Iha is 67 kDa in E. coli O157:H7 and 78 kDa in laboratory E. coli and is structurally unlike other known adhesins. DNA adjacent to iha contains tellurite resistance loci and is conserved in structure in distantly related pathogenic E. coli, but it is absent from nontoxigenic E. coli O55:H7, sorbitol-fermenting Stx-producing E. coli O157:H-, and laboratory E. coli. We have termed this region the tellurite resistance- and adherence-conferring island. We conclude that Iha is a novel bacterial adherence-conferring protein and is contained within an E. coli chromosomal island of conserved structure. Pathogenic E. coli O157:H7 has only recently acquired this island.

354 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370