scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: Using wheat as a model crop species, it is shown that poorly adapted cultivars are partially responsible for the lower yields often found in organic farming systems when compared with conventional farming systems.

326 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs).
Abstract: Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lowe...

326 citations

Journal ArticleDOI
TL;DR: This study revealed the nature of native defects and their roles in ZnO through positron annihilation and optical transmission measurements and revealed oxygen vacancies are the origin for the shift in the optical absorption band that causes the red or orange coloration.
Abstract: This study revealed the nature of native defects and their roles in ZnO through positron annihilation and optical transmission measurements. It showed oxygen vacancies are the origin for the shift in the optical absorption band that causes the red or orange coloration. It also revealed experimental evidence that the donor nature of oxygen vacancy is approximately 0.7 eV. In addition, this work showed the Zn interstitial was not the donor in the as-grown ZnO and supported recent calculations that predicted hydrogen in an oxygen vacancy forms multicenter bonds and acts as a shallow donor.

326 citations

Journal ArticleDOI
TL;DR: Theories explaining electroporation of the cell membrane and applications of the nonthermal PEF process are reviewed in this paper.
Abstract: Pulses of high voltage electric fields (PEF) are potentially a most important cold pasteurization/sterilization food preservation technique to replace or partially substitute for thermal processes. During the PEF process, lysis of micro-organisms is caused by irreversible structural changes in the membranes, leading to pore formation and destruction of the semipermeable barrier of the membrane. Theories explaining electroporation of the cell membrane and applications of the nonthermal PEF process are reviewed in this paper.

325 citations

Journal ArticleDOI
TL;DR: In this paper, the lifetime of single-crystal CdTe solar cells was shown to be comparable to those in GaAs over a hole density range relevant for solar applications.
Abstract: CdTe solar cells have the potential to undercut the costs of electricity generated by other technologies, if the open-circuit voltage can be increased beyond 1 V without significant decreases in current. However, in the past decades, the open-circuit voltage has stagnated at around 800–900 mV. This is lower than in GaAs solar cells, even though GaAs has a smaller bandgap; this is because it is more difficult to achieve simultaneously high hole density and lifetime in II–VI materials than in III–V materials. Here, by doping the CdTe with a Group V element, we report lifetimes in single-crystal CdTe that are nearly radiatively limited and comparable to those in GaAs over a hole density range relevant for solar applications. Furthermore, the deposition on CdTe of nanocrystalline CdS layers that form non-ideal heterointerfaces with 10% lattice mismatch impart no damage to the CdTe surface and show excellent junction transport properties. These results enable the fabrication of CdTe solar cells with open-circuit voltage greater than 1 V. Solar cells based on CdTe are a promising low-cost alternative to mainstream Si devices, but they usually produce voltages below 900 mV. Burst et al. now show that open-circuit voltages greater than 1 V can be achieved by doping the CdTe with a group V element.

325 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370