scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper examined the effects of emotional labor on workers employed in the banking and hospital industries and found that performance of emotional labour does not have uniformly negative consequences for workers, as some accounts imply.
Abstract: Understanding the social-psychology effects of frontline service work requires attention to the emotional labor performed by incumbents of these positions. Using Hochschild's 1983 classification of jobs requiring emotional labor, this study examines the effects of emotional labor on workers employed in the banking and hospital industries. The results suggest that performance of emotional labor does not have uniformly negative consequences for workers, as some accounts imply. Instead, the effects of emotional labor are conditioned by workers' level of job autonomy and job involvement, and their self-monitoring abilities. The conditions under which emotional labor has negative and positive social-psychological consequences are discussed.

893 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1319 moreInstitutions (78)
02 Nov 2017-Nature
TL;DR: A measurement of the Hubble constant is reported that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data.
Abstract: On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source4, 5, 6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8, 9, 10, 11, 12, 13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’14, 15, 16, 17, 18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20, 21, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.

892 citations

Journal ArticleDOI
TL;DR: This review focuses on medicolegal forensic entomology, which deals with arthropod involvement in events surrounding felonies, usually violent crimes such as murder, suicide, and rape, but also includes other violations such as physical abuse and contraband trafficking.
Abstract: Forensic entomology is the application of the study of insects and other arthropods to legal issues, especially in a court of law. The past decade has seen a resurgence of interest in forensic investigations by entomologists. Lord & Stevenson (83) identified three categories of forensic entomology: urban, stored-product, and medicolegal. Urban forensic entomology includes such things as litigations and civil law actions involving arthropods in dwellings or as house and garden pests. Law suits dealing with the misuse of pesticides are included here. Stored-product forensic entomology generally deals with arthropod infestation or contamination of a wide range of commercial prod­ ucts (e.g. beetles or their parts in candy bars, flies in ketchup, or spiders in bathroom tissue). Like its urban counterpart, this category usually involves litigation. The third category, medicolegal forensic entomology, is the focus of this review and is the most popularized aspect of the science. It deals with arthropod involvement in events surrounding felonies, usually violent crimes such as murder, suicide, and rape, but also includes other violations such as physical abuse and contraband trafficking (116). A more accurate name for this category is medicocriminal forensic entomology (53).

881 citations

Journal ArticleDOI
30 Apr 2010-Science
TL;DR: A synthesis of grass evolutionary biology with grassland ecosystem science will further knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.
Abstract: The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.

878 citations

Journal ArticleDOI
TL;DR: In this article, the authors review advances in sensor technology, particularly emerging geophysical methods and distributed sensors, aimed at bridging this gap and offer a vision for future research, listing many of the current scientific and technical challenges.
Abstract: At the watershed scale, soil moisture is the major control for rainfall–runoff response, especially where saturation excess runoff processes dominate. From the ecological point of view, the pools of soil moisture are fundamental ecosystem resources providing the transpirable water for plants. In drylands particularly, soil moisture is one of the major controls on the structure, function, and diversity in ecosystems. In terms of the global hydrological cycle, the overall quantity of soil moisture is small, ∼0.05%; however, its importance to the global energy balance and the distribution of precipitation far outweighs its physical amount. In soils it governs microbial activity that affects important biogeochemical processes such as nitrification and CO2 production via respiration. During the past 20 years, technology has advanced considerably, with the development of different electrical sensors for determining soil moisture at a point. However, modeling of watersheds requires areal averages. As a result, point measurements and modeling grid cell data requirements are generally incommensurate. We review advances in sensor technology, particularly emerging geophysical methods and distributed sensors, aimed at bridging this gap. We consider some of the data analysis methods for upscaling from a point to give an areal average. Finally, we conclude by offering a vision for future research, listing many of the current scientific and technical challenges.

877 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370