scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the recent advances in the graft copolymerization of chitosan with particular emphasis on atom transfer radical polymerization (ATRP) with the aim of describing the chemistry of the reactions used to alter the surface characteristics of chITosan.
Abstract: Chitosan is among one of the most important and most studied natural polymers. The cationic nature of chitosan makes it a polymer of high importance from environmental and biomedical point of views among the other natural polysaccharides. However, it also suffers from a few disadvantages and requires further development to achieve the targeted results and desired range of efficiency. To overcome some of the disadvantages of the pristine chitosan, it is most imperative to functionalize it with suitable functional groups. Therefore, it is highly desired to understand the chemistry of the reactions used to alter the surface characteristics of chitosan. Among various techniques presently being used to tailor the surface characteristics of chitosan, graft copolymerization is of the utmost importance. The aim of the present perspective is to describe the recent advances in the graft copolymerization of chitosan with particular emphasis on atom transfer radical polymerization (ATRP). This perspective describes t...

479 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of bifunctional electrocatalysts with a combination of monofunctional electrodes such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been developed.
Abstract: Hydrogen production by electrochemical water electrolysis has received great attention as an alternative technology for energy conversion and storage. The oxygen electrode has a substantial effect on the performance and durability of water electrolyzers and reversible (or regenerative) fuel cells because of its intrinsically slow kinetics for oxygen evolution/reduction and poor durability under harsh operating environments. To improve oxygen kinetics and durability of the electrode, extensive studies for highly active and stable oxygen electrocatalysts have been performed. However, due to the thermodynamic instability of transition metals in acidic media, noble metal compounds have been primarily utilized as electrocatalysts in water electrolyzers and reversible fuel cells. For water electrolyzer applications, single noble metal oxides such as ruthenium oxide and iridium oxide have been studied, and binary or ternary metal oxides have been developed to obtain synergistic effects of each component. On the other hand, a variety of bifunctional electrocatalysts with a combination of monofunctional electrocatalysts such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been mainly proposed. Practically, supported iridium oxide-on-platinum, its reverse type, and non-precious metal-supported platinum and iridium bifunctional electrocatalysts have been developed. Recent theoretical calculations and experimental studies in terms of water electrolysis and fuel cell technology suggest the effective ways to cope with current major challenges of cost and durability of oxygen electrocatalysts for technical applications.

479 citations

Journal ArticleDOI
TL;DR: Experimental studies in the Pacific Northwest and the southeast U.S.A., and in Norway, are drawn upon to show that tree resistance to attack may be closely related to the amount of current and stored photosynthate that is available for defense.

479 citations

Journal ArticleDOI
26 Feb 2009-Nature
TL;DR: Ca2+ signal to salicylic-acid-mediated immune response through calmodulin, AtSR1 (also known as CAMTA3), a Ca2+/calmodulin-binding transcription factor, and EDS1, an established regulator ofsalicylic acid level are reported.
Abstract: Intracellular calcium transients during plant-pathogen interactions are necessary early events leading to local and systemic acquired resistance. Salicylic acid, a critical messenger, is also required for both of these responses, but whether and how salicylic acid level is regulated by Ca(2+) signalling during plant-pathogen interaction is unclear. Here we report a mechanism connecting Ca(2+) signal to salicylic-acid-mediated immune response through calmodulin, AtSR1 (also known as CAMTA3), a Ca(2+)/calmodulin-binding transcription factor, and EDS1, an established regulator of salicylic acid level. Constitutive disease resistance and elevated levels of salicylic acid in loss-of-function alleles of Arabidopsis AtSR1 suggest that AtSR1 is a negative regulator of plant immunity. This was confirmed by epistasis analysis with mutants of compromised salicylic acid accumulation and disease resistance. We show that AtSR1 interacts with the promoter of EDS1 and represses its expression. Furthermore, Ca(2+)/calmodulin-binding to AtSR1 is required for suppression of plant defence, indicating a direct role for Ca(2+)/calmodulin in regulating the function of AtSR1. These results reveal a previously unknown regulatory mechanism linking Ca(2+) signalling to salicylic acid level.

477 citations

Journal ArticleDOI
10 Feb 2005-Nature
TL;DR: The assembly of the iron-sulphur framework of the active site of iron-only hydrogenase (the H-cluster) is reported, and it is shown that it functions as an electrocatalyst for proton reduction.
Abstract: In conventional hydrogen fuel cells the rapid interconversion of protons and electrons to hydrogen requires catalysis by expensive metals, usually platinum. In the living world enzymes catalyse this same reaction at extraordinary rates using abundant metals. Tard et al. now report the chemical synthesis of the iron–sulphur structure at the heart of the hydrogenase protein. The resulting iron–sulphur framework functions as an electrocatalyst for proton reduction, a potentially important step towards new materials to replace platinum in the anodes of fuel cells. The metal-sulphur active sites of hydrogenases catalyse hydrogen evolution or uptake at rapid rates. Understanding the structure and function of these active sites—through mechanistic studies of hydrogenases1,2,3,4, synthetic assemblies5,6,7,8,9,10,11,12 and in silico models13,14,15—will help guide the design of new materials for hydrogen production or uptake16. Here we report the assembly of the iron-sulphur framework of the active site of iron-only hydrogenase (the H-cluster), and show that it functions as an electrocatalyst for proton reduction. Through linking of a di-iron subsite to a {4Fe4S} cluster, we achieve the first synthesis of a metallosulphur cluster core involved in small-molecule catalysis. In addition to advancing our understanding of the natural biological system, the availability of an active, free-standing analogue of the H-cluster may enable us to develop useful electrocatalytic materials for application in, for example, reversible hydrogen fuel cells. (Platinum is currently the preferred electrocatalyst for such applications, but is expensive, limited in availability and, in the long term, unsustainable17.)

477 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370