scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: It is assumed that time synchronized measurements will be ubiquitously available at all high-voltage substations at very high rates and how this information can be utilized more effectively for real-time operation as well as for subsequent decision making is examined.
Abstract: In this paper we assume that time synchronized measurements will be ubiquitously available at all high-voltage substations at very high rates. We examine how this information can be utilized more effectively for real-time operation as well as for subsequent decision making. This new information available in real time is different, both in quality and in quantity, than the real-time measurements available today. The promise of new and improved applications to operate the power system more reliably and efficiently has been recognized but is still in conceptual stages. Also, the present system to handle this real-time data has been recognized to be inadequate but even conceptual designs of such infrastructure needed to store and communicate the data are in their infancy. In this paper, we first suggest the requirements for an information infrastructure to handle ubiquitous phasor measurements recognizing that the quantity and rate of data would make it impossible to store all the data centrally as done today. Then we discuss the new and improved applications, classified into two categories: one is the set of automatic wide-area controls and the other is the set of control center (EMS) functions with special attention to the state estimator. Finally, given that the availability of phasor measurements will grow over time, the path for smooth transition from present-day systems and applications to those discussed here is delineated.

465 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

464 citations

Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: The genome sequence of a male infant recovered from the Anzick burial site in western Montana is sequenced and it is shown that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the AnZick-1 individual and thus happened before 12,600 years bp.
Abstract: Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 C-14 years before present (BP) (13,000 to 12,600 calendar years BP)(1,2). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology(3). However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans(2). An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum(4). Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 C-14 years BP (approximately 12,707-12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population(5) into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

464 citations

Journal ArticleDOI
01 Jun 2001-Genetics
TL;DR: A model presented for the evolutionary history of plant terpenoid synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization.
Abstract: Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.

463 citations

Journal ArticleDOI
TL;DR: Tissues of M. oleifera and M. stenopetala and leaves of both species contained quercetin 3-O-rhamnoglucoside (rutin) and 5-caffeoylquinic acid, and proanthocyanidins nor anthocyanins were detected in any of the tissues of either species.
Abstract: Moringa species are important multi-purpose tropical crops, as human foods and for medicine and oil production. There has been no previous comprehensive analysis of the secondary metabolites in Moringa species. Tissues of M. oleifera from a wide variety of sources and M. stenopetala from a single source were analyzed for glucosinolates and phenolics (flavonoids, anthocyanins, proanthocyanidins, and cinnamates). M. oleifera and M. stenopetala seeds only contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate at high concentrations. Roots of M. oleifera and M. stenopetala had high concentrations of both 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and benzyl glucosinolate. Leaves from both species contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and three monoacetyl isomers of this glucosinolate. Only 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate was detected in M. oleifera bark tissue. M. oleifera leaves contained quercetin-3-O-glucoside and quercetin-3-O-(6' '-malonyl-glucoside), and lower amounts of kaempferol-3-O-glucoside and kaempferol-3-O-(6' '-malonyl-glucoside). M. oleifera leaves also contained 3-caffeoylquinic acid and 5-caffeoylquinic acid. Leaves of M. stenopetala contained quercetin 3-O-rhamnoglucoside (rutin) and 5-caffeoylquinic acid. Neither proanthocyanidins nor anthocyanins were detected in any of the tissues of either species.

463 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370