scispace - formally typeset
Search or ask a question
Institution

Washington State University

EducationPullman, Washington, United States
About: Washington State University is a education organization based out in Pullman, Washington, United States. It is known for research contribution in the topics: Population & Gene. The organization has 26947 authors who have published 57736 publications receiving 2341509 citations. The organization is also known as: WSU & Wazzu.


Papers
More filters
Journal ArticleDOI
TL;DR: The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive gene in local and distal tissues of the plants.
Abstract: Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived oligogalacturonides and fungal-derived chitosan oligosaccharides is severely reduced by two inhibitors (salicylic acid and diethyldi-thiocarbamic acid) of the octadecanoid pathway, supporting a role for the pathway in signaling by oligosaccharides. Jasmonic acid levels in leaves of tomato plants increased several fold within 2 hr after supplying the polypeptide systemin, oligogalacturonides, or chitosan to the plants through their cut stems, as expected if they utilize the octadecanoid pathway. The time course of jasmonic acid accumulation in tomato leaves in response to wounding was consistent with its proposed role in signaling proteinase inhibitor mRNA and protein synthesis. The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive genes in local and distal tissues of the plants.

463 citations

Journal ArticleDOI
TL;DR: The photophysical characteristics of the encapsulated fluorophores differ dramatically from those of the same species in solution, making nanoparticle-protected hydrophobic fluorophore attractive materials for potential applications such as optical data storage and switching and biological fluorescent labeling.
Abstract: Polymer nanoparticles of 40−400 nm diameter with spiropyran−merocyanine dyes incorporated into their hydrophobic cavities have been prepared; in contrast to their virtually nonfluorescent character in most environments, the merocyanine forms of the encapsulated dyes are highly fluorescent. Spiro−mero photoisomerization is reversible, allowing the fluorescence to be switched “on” and “off” by alternating UV and visible light. Immobilizing the dye inside hydrophobic pockets of nanoparticles also improves its photostability, rendering it more resistant than the same dyes in solution to fatigue effects arising from photochemical switching. The photophysical characteristics of the encapsulated fluorophores differ dramatically from those of the same species in solution, making nanoparticle-protected hydrophobic fluorophores attractive materials for potential applications such as optical data storage and switching and biological fluorescent labeling. To evaluate the potential for biological tagging, these optica...

460 citations

Journal ArticleDOI
Maanasa Raghavan1, Matthias Steinrücken2, Matthias Steinrücken3, Kelley Harris3, Stephan Schiffels4, Simon Rasmussen5, Michael DeGiorgio6, Anders Albrechtsen1, Cristina Valdiosera1, Cristina Valdiosera7, María C. Ávila-Arcos1, María C. Ávila-Arcos8, Anna-Sapfo Malaspinas1, Anders Eriksson9, Anders Eriksson10, Ida Moltke1, Mait Metspalu11, Mait Metspalu12, Julian R. Homburger8, Jeffrey D. Wall13, Omar E. Cornejo14, J. Víctor Moreno-Mayar1, Thorfinn Sand Korneliussen1, Tracey Pierre1, Morten Rasmussen8, Morten Rasmussen1, Paula F. Campos1, Paula F. Campos15, Peter de Barros Damgaard1, Morten E. Allentoft1, John Lindo16, Ene Metspalu11, Ene Metspalu12, Ricardo Rodríguez-Varela17, Josefina Mansilla, Celeste Henrickson18, Andaine Seguin-Orlando1, Helena Malmström19, Thomas W. Stafford1, Thomas W. Stafford20, Suyash Shringarpure8, Andrés Moreno-Estrada8, Monika Karmin11, Monika Karmin12, Kristiina Tambets11, Anders Bergström4, Yali Xue4, Vera Warmuth21, Andrew D. Friend9, Joy S. Singarayer22, Paul J. Valdes23, Francois Balloux, Ilán Leboreiro, Jose Luis Vera, Héctor Rangel-Villalobos24, Davide Pettener25, Donata Luiselli25, Loren G. Davis26, Evelyne Heyer27, Christoph P. E. Zollikofer28, Marcia S. Ponce de León28, Colin Smith7, Vaughan Grimes29, Vaughan Grimes30, Kelly-Anne Pike29, Michael Deal29, Benjamin T. Fuller31, Bernardo Arriaza32, Vivien G. Standen32, Maria F. Luz, Francois Ricaut33, Niede Guidon, Ludmila P. Osipova34, Ludmila P. Osipova35, Mikhail Voevoda34, Mikhail Voevoda35, Olga L. Posukh34, Olga L. Posukh35, Oleg Balanovsky, Maria Lavryashina36, Yuri Bogunov, Elza Khusnutdinova35, Elza Khusnutdinova37, Marina Gubina, Elena Balanovska, Sardana A. Fedorova38, Sergey Litvinov35, Sergey Litvinov11, Boris Malyarchuk35, Miroslava Derenko35, M. J. Mosher39, David Archer40, Jerome S. Cybulski41, Jerome S. Cybulski42, Barbara Petzelt, Joycelynn Mitchell, Rosita Worl, Paul Norman8, Peter Parham8, Brian M. Kemp14, Toomas Kivisild11, Toomas Kivisild9, Chris Tyler-Smith4, Manjinder S. Sandhu43, Manjinder S. Sandhu4, Michael H. Crawford44, Richard Villems12, Richard Villems11, David Glenn Smith45, Michael R. Waters46, Ted Goebel46, John R. Johnson47, Ripan S. Malhi16, Mattias Jakobsson19, David J. Meltzer1, David J. Meltzer48, Andrea Manica9, Richard Durbin4, Carlos Bustamante8, Yun S. Song3, Rasmus Nielsen3, Eske Willerslev1 
21 Aug 2015-Science
TL;DR: The results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders.
Abstract: How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

459 citations


Authors

Showing all 27183 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Martin Karplus163831138492
Herbert A. Simon157745194597
Suvadeep Bose154960129071
Rajesh Kumar1494439140830
Kevin Murphy146728120475
Jonathan D. G. Jones12941780908
Douglas E. Soltis12761267161
Peter W. Kalivas12342852445
Chris Somerville12228445742
Pamela S. Soltis12054361080
Yuehe Lin11864155399
Howard I. Maibach116182160765
Jizhong Zhou11576648708
Farshid Guilak11048041327
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202398
2022344
20212,786
20202,783
20192,691
20182,370