scispace - formally typeset
Search or ask a question
Institution

Watson School of Biological Sciences

About: Watson School of Biological Sciences is a based out in . It is known for research contribution in the topics: RNA interference & Argonaute. The organization has 310 authors who have published 409 publications receiving 113053 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Abstract: MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.

6,282 citations

Journal ArticleDOI
18 Jan 2001-Nature
TL;DR: Dicer is a member of the RNase III family of nucleases that specifically cleave double-stranded RNAs, and is evolutionarily conserved in worms, flies, plants, fungi and mammals, and has a distinctive structure, which includes a helicase domain and dualRNase III motifs.
Abstract: RNA interference (RNAi) is the mechanism through which double-stranded RNAs silence cognate genes. In plants, this can occur at both the transcriptional and the post-transcriptional levels; however, in animals, only post-transcriptional RNAi has been reported to date. In both plants and animals, RNAi is characterized by the presence of RNAs of about 22 nucleotides in length that are homologous to the gene that is being suppressed. These 22-nucleotide sequences serve as guide sequences that instruct a multicomponent nuclease, RISC, to destroy specific messenger RNAs. Here we identify an enzyme, Dicer, which can produce putative guide RNAs. Dicer is a member of the RNase III family of nucleases that specifically cleave double-stranded RNAs, and is evolutionarily conserved in worms, flies, plants, fungi and mammals. The enzyme has a distinctive structure, which includes a helicase domain and dual RNase III motifs. Dicer also contains a region of homology to the RDE1/QDE2/ARGONAUTE family that has been genetically linked to RNAi.

5,229 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: It is found that the levels of the primary or mature microRNAs derived from the mir-17–92 locus are often substantially increased in human B-cell lymphomas, and the cluster is implicate as a potential human oncogene.
Abstract: To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.

3,735 citations

Journal ArticleDOI
03 Sep 2004-Science
TL;DR: The evidence supports a model in which Argonaute contributes “Slicer” activity to RISC, providing the catalytic engine for RNAi.
Abstract: Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.

2,704 citations

Journal ArticleDOI
28 Jun 2007-Nature
TL;DR: A family of miRNAs, miR-34a–c, whose expression reflected p53 status is described, whose encoded genes are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo.
Abstract: A global decrease in microRNA (miRNA) levels is often observed in human cancers, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a-c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.

2,658 citations


Authors

Showing all 310 results

NameH-indexPapersCitations
Gregory J. Hannon165421140456
David A. Jackson136109568352
Scott W. Lowe13439689376
Michael Wigler11329863159
Karel Svoboda11325060305
Robert A. Martienssen10029244866
Thomas R. Gingeras10024991538
Adrian R. Krainer9825436830
Michael Q. Zhang9337842008
David A. Tuveson9025452178
David L. Spector8421230451
Roberto Malinow7413933738
Michael C. Schatz7223930739
W. Richard McCombie7114464155
Ravi Sachidanandam6714225638
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

93% related

Cold Spring Harbor Laboratory
6.6K papers, 1M citations

93% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

92% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Broad Institute
11.6K papers, 1.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20218
202017
201911
201816
201720
201621