scispace - formally typeset
Search or ask a question
Institution

Weizmann Institute of Science

EducationRehovot, Israel
About: Weizmann Institute of Science is a education organization based out in Rehovot, Israel. It is known for research contribution in the topics: Population & Antigen. The organization has 21942 authors who have published 54561 publications receiving 3032812 citations. The organization is also known as: Bessie F. Lawrence International Summer Science Institute & Weitzman Institute.
Topics: Population, Antigen, Immune system, Gene, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: This review highlights primarily the first MAPK cascade to be discovered that uses the MEK and ERK isoforms and describes their involvement in different cellular processes, and it is now known that signaling pathways initiated by phorbol esters, iono‐phors, heat shock, and liganda for seven transmembrane receptors use distinct MAPK cascades with little or no cross‐reactivity between them.
Abstract: The transmission of extracellular signals into their intracellular targets is mediated by a network of interacting proteins that regulate a large number of cellular processes. Cumulative efforts from many laboratories over the past decade have allowed the elucidation of one such signaling mechanism, which involves activations of several membranal signaling molecules followed by a sequential stimulation of several cytoplasmic protein kinases collectively known as mitogen-activated protein kinase (MAPK) signaling cascade. Up to six tiers in this cascade contribute to the amplification and specificity of the transmitted signals that eventually activate several regulatory molecules in the cytoplasm and in the nucleus to initiate cellular processes such as proliferation, differentiation, and development. Moreover, because many oncogenes have been shown to encode proteins that transmit mitogenic signals upstream of this cascade, the MAPK pathway provides a simple unifying explanation for the mechanism of action...

3,548 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: Root colonization by Trichoderma spp.
Abstract: Trichoderma spp. are free-living fungi that are common in soil and root ecosystems. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. At least some strains establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis and a few cells below this level. They produce or release a variety of compounds that induce localized or systemic resistance responses, and this explains their lack of pathogenicity to plants. These root-microorganism associations cause substantial changes to the plant proteome and metabolism. Plants are protected from numerous classes of plant pathogen by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, resistance to abiotic stresses and the uptake and use of nutrients.

3,261 citations

Journal ArticleDOI
10 May 2012-Nature
TL;DR: The findings suggest that RNA decoration by m6A has a fundamental role in regulation of gene expression, and a subset of stimulus-dependent, dynamically modulated sites is identified.
Abstract: An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N(6)-methyladenosine (m(6)A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m(6)A modification landscape in a transcriptome-wide manner, using a novel approach, m(6)A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m(6)A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks--around stop codons and within long internal exons--and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m(6)A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m(6)A has a fundamental role in regulation of gene expression.

3,237 citations


Authors

Showing all 22106 results

NameH-indexPapersCitations
Lewis C. Cantley196748169037
Chris Sander178713233287
David A. Weitz1781038114182
Michael I. Jordan1761016216204
Richard H. Friend1691182140032
Yang Yang1642704144071
Aviv Regev163640133857
Dongyuan Zhao160872106451
Tobin J. Marks1591621111604
Klaus Rajewsky15450488793
Roberto Romero1511516108321
Rui Zhang1512625107917
Joseph Schlessinger15049298862
Mikhail D. Lukin14660681034
Danny Reinberg14534268201
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

Stanford University
320.3K papers, 21.8M citations

94% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022283
20212,022
20202,172
20191,943
20181,840