scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Centre for Human Genetics

FacilityOxford, United Kingdom
About: Wellcome Trust Centre for Human Genetics is a facility organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 2122 authors who have published 4269 publications receiving 433899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Deep genomic data sets are surveyed to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions and suggest that accurate regulation of micro- exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein-protein interactions.
Abstract: Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein-protein interactions.

197 citations

Journal ArticleDOI
TL;DR: A review of gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies is presented in this article, where a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms "endometriaosis" plus 'allele' or 'polymorphism' or "gene".
Abstract: BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes ( or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.

197 citations

Journal ArticleDOI
TL;DR: KRAS mutation seems to be associated with metastasis in specific sites, lung and brain, in colorectal cancer patients, and this data highlight the potential of somatic mutations for informing surveillance strategies.
Abstract: Purpose: Oncogene mutations contribute to colorectal cancer development. We searched for differences in oncogene mutation profiles between colorectal cancer metastases from different sites and evaluated these as markers for site of relapse. Experimental Design: One hundred colorectal cancer metastases were screened for mutations in 19 oncogenes, and further 61 metastases and 87 matched primary cancers were analyzed for genes with identified mutations. Mutation prevalence was compared between (a) metastases from liver ( n = 65), lung ( n = 50), and brain ( n = 46), (b) metastases and matched primary cancers, and (c) metastases and an independent cohort of primary cancers ( n = 604). Mutations differing between metastasis sites were evaluated as markers for site of relapse in 859 patients from the VICTOR trial. Results: In colorectal cancer metastases, mutations were detected in 4 of 19 oncogenes: BRAF (3.1%), KRAS (48.4%), NRAS (6.2%), and PIK3CA (16.1%). KRAS mutation prevalence was significantly higher in lung (62.0%) and brain (56.5%) than in liver metastases (32.3%; P = 0.003). Mutation status was highly concordant between primary cancer and metastasis from the same individual. Compared with independent primary cancers, KRAS mutations were more common in lung and brain metastases ( P KRAS mutation was associated with lung relapse (HR = 2.1; 95% CI, 1.2 to 3.5, P = 0.007) but not liver relapse in patients from the VICTOR trial. Conclusions: KRAS mutation seems to be associated with metastasis in specific sites, lung and brain, in colorectal cancer patients. Our data highlight the potential of somatic mutations for informing surveillance strategies. Clin Cancer Res; 17(5); 1122–30. ©2011 AACR .

197 citations

Journal ArticleDOI
TL;DR: A java-based program, SNPtagger, is described, which screens for minimal sets of SNP markers to represent given haplotypes according to various user requirements and offers several options for inclusion/exclusion of specific markers and presents alternative panels for final selection.
Abstract: Haplotypes defined by common single nucleotide polymorphisms (SNPs) have important implications for mapping of disease genes and human traits. Often only a small subset of the SNPs is sufficient to capture the full haplotype information. Such subsets of markers are called haplotype tagging SNPs (htSNPs). Although htSNPs can be identified by eye, efficient computer algorithms and flexible interactive software tools are required for large datasets such as the human genome haplotype map. We describe a java-based program, SNPtagger, which screens for minimal sets of SNP markers to represent given haplotypes according to various user requirements. The program offers several options for inclusion/exclusion of specific markers and presents alternative panels for final selection.

197 citations

Journal ArticleDOI
TL;DR: Five genetically separable, cross-test dimensions of anxiety could be identified: the suppression of locomotor activity in low to moderately anxiogenic regions of the tests; a shift toward proportionally less time and activity spent in high-anxiogenic test areas; the suppressed of rearing behavior; increased latency to enter novel areas; and increased autonomic responses, as assessed by defecation and urination.
Abstract: In a test battery consisting of an open-field arena, a light-dark box, a mirror-chamber box, an elevated plus maze, and an elevated square maze, 1,671 mice were tested, generating over 100 putative measures of anxiety in rodents. Quantitative trait loci (QTL) analysis was carried out on all measures, plus composite measures and phenotypic factor scores. Significant LOD scores were found for QTL on 17 chromosomes, with large and consistent QTL behavioral effects on chromosomes 1, 4, 7, 8, 14, 15, l8, and X. QTL on chromosomes 4 and 8 largely influence locomotor activity in both home cages and novel environments, whereas QTL on chromosomes 1, 15, and 18 influence anxiety-related behaviors. Five genetically separable, cross-test dimensions of anxiety could be identified: (i) the suppression of locomotor activity in low to moderately anxiogenic regions of the tests; (ii) a shift toward proportionally less time and activity spent in high-anxiogenic test areas; (iii) the suppression of rearing behavior; (iv) increased latency to enter novel areas; (v) increased autonomic responses, as assessed by defecation and urination. Patterns of QTL influence on cross-test composite scores were distinctive. For example, the QTL on chromosome 1 strongly influenced safe-area locomotor activity (LOD = 35) and autonomic responses (LOD = 16), whereas the QTL on chromosome 15 influenced the proportion of activity in high-anxiogenic areas (LOD = 16), latency to enter novel areas (LOD = 36) and rearing behavior (LOD = 57). Phenotypic factor analysis identified factors heavily loaded on single tests, rather than cross-test factors. The use of factor analysis or within-test principal components for data reduction before genetic analysis was less satisfactory than using genetic dissection methods on the original measures and logically derived composites.

196 citations


Authors

Showing all 2127 results

NameH-indexPapersCitations
Mark I. McCarthy2001028187898
John P. A. Ioannidis1851311193612
Gonçalo R. Abecasis179595230323
Simon I. Hay165557153307
Robert Plomin151110488588
Ashok Kumar1515654164086
Julian Parkhill149759104736
James F. Wilson146677101883
Jeremy K. Nicholson14177380275
Hugh Watkins12852491317
Erik Ingelsson12453885407
Claudia Langenberg12445267326
Adrian V. S. Hill12258964613
John A. Todd12151567413
Elaine Holmes11956058975
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Massachusetts Medical School
31.8K papers, 1.9M citations

93% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202221
202183
202074
2019134
2018182
2017323