scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Centre for Human Genetics

FacilityOxford, United Kingdom
About: Wellcome Trust Centre for Human Genetics is a facility organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 2122 authors who have published 4269 publications receiving 433899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An association analysis of more than 1,500 individuals from different case-control and family studies observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.
Abstract: Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7 x 10(-8), OR = 0.31, 95% CI = 0.20-0.48, and HLA-DQA1 rs1071630, case-control P = 4.9 x 10(-14), OR = 0.43, 95% CI = 0.35-0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.

140 citations

Journal ArticleDOI
TL;DR: A Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps, incorporating the shattered coalescent model for genealogies, allowing for multiple founding mutations at the disease locus and for sporadic cases of disease.
Abstract: We present a Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. The method explicitly models the genealogy underlying a sample of case chromosomes in the vicinity of a putative disease locus, in contrast with the assumption of a star-shaped tree made by many existing multipoint methods. Within this modeling framework, we can allow for missing marker information and for uncertainty about the true underlying genealogy and the makeup of ancestral marker haplotypes. A crucial advantage of our method is the incorporation of the shattered coalescent model for genealogies, allowing for multiple founding mutations at the disease locus and for sporadic cases of disease. Output from the method includes approximate posterior distributions of the location of the disease locus and population-marker haplotype proportions. In addition, output from the algorithm is used to construct a cladogram to represent genetic heterogeneity at the disease locus, highlighting clusters of case chromosomes sharing the same mutation. We present detailed simulations to provide evidence of improvements over existing methodology. Furthermore, inferences about the location of the disease locus are shown to remain robust to modeling assumptions.

139 citations

Journal ArticleDOI
01 Oct 1995-Diabetes
TL;DR: This study shows that the diabetogenic phenotype can be achieved through the actions of variable combinations of MHC-unlinked genes and a diabetogenesis MHC haplotype through outcrossing NOD mice to other inbred strains congenic for the NOD M HC haplotype.
Abstract: Chromosome locations of non–major histocompatibility complex (MHC) genes contributing to insulin-dependent diabetes mellitus (IDDM) in mice have been determined by outcrossing NOD mice to other inbred strains congenic for the NOD MHC haplotype ( H2g7 ). At least nine non-MHC IDDM susceptibility genes ( Idd ) were previously identified at first backcross (BC1) after outcross of NOD to C57BL/10. H2g7 congenic mice (B10. H2g7 ). We investigated whether the same set of Idd loci segregated with IDDM susceptibility after outcross of NOD to NON. H2g7 congenic mice. Since the outcrosses to NON. H2g7 and B10. H2g7 were performed in the same vivarium, direct comparisons were made of the chromosomal locations and relative strengths of Idd alleles in diabetic progeny from the two different outcrosses. In comparison with the NOD × B10. H2g7 outcross, the NOD × NON. H2g7 outcross produced significantly higher IDDM frequencies in F1, F2, and BC1 generations. The high F2 diabetes frequency allowed evaluation of the effects of homozygous expression of both the susceptibility and the resistance allele at Idd loci. This analysis demonstrated that no single non-MHC Idd locus was essential for the onset of diabetes in this cross. After outcross to NON. H2g7 , Idd4 (chromosome [Chr] 11), Idd5 (Chr 1), and Idd8 (Chr 14) did not segregate with IddM in either the BC1 or the F2 generation. Diabetogenic NOD-derived alleles at Idd2 (Chr 9), Idd3 (Chr 3), and Idd10 (Chr 3) were segregating in the BC1. An NON-derived allele contributing to susceptibility on Chr 7 ( Idd7 ) was also detected. Dominant traits, detectable only in the F2 cross, were encoded by Chr 4 ( Idd9 ) and two newly mapped loci on Chr 13 ( Idd14 ) and 5 ( Idd15 ). A third dominant trait was encoded by Chr 6 (possibly Idd6 ), but here, in contrast to Idd9 , Idd14 , and Idd15 , the NON allele was diabetogenic. Stepwise logistic regression analysis of the BC1 and F2 data confirmed that the ability to identify certainty of the non-MHC Idd loci was contingent on the extent of homozygosity for NOD background genes. This study shows that the diabetogenic phenotype can be achieved through the actions of variable combinations of MHC-unlinked genes and a diabetogenic MHC haplotype.

139 citations

Journal ArticleDOI
TL;DR: Structural studies have contributed to the design of newer generation NNRTIs and identified a number of features which may contribute to their much improved resistance profiles, including reduced interactions with Tyr181, the presence of inhibitor/main-chain H-bonds and ability to undergo conformational flexing and rearrangement within the mutated drug site.

139 citations

Journal ArticleDOI
TL;DR: The increased expression of neurotrophic factors and nerve fibres in endometriotic lesions, eutopic endometrium and the peritoneum imply a role of such peripheral changes in the pathogenesis ofendometriosis-associated pain.
Abstract: Background Pain remains the cardinal symptom of endometriosis. However, to date, the underlying mechanisms are still only poorly understood. Increasing evidence points towards a close interaction between peripheral nerves, the peritoneal environment and the central nervous system in pain generation and processing. Recently, studies demonstrating nerve fibres and neurotrophic and angiogenic factors in endometriotic lesions and their vicinity have led to increased interest in peripheral changes in endometriosis-associated pain. This review focuses on the origin and function of these nerves and factors as well as possible peripheral mechanisms that may contribute to the generation and modulation of pain in women with endometriosis. Methods We conducted a systematic search using several databases (PubMed, MEDLINE, EMBASE and CINAHL) of publications from January 1977 to October 2013 to evaluate the possible roles of the peripheral nervous system in endometriosis pathophysiology and how it can contribute to endometriosis-associated pain. Results Endometriotic lesions and peritoneal fluid from women with endometriosis had pronounced neuroangiogenic properties with increased expression of new nerve fibres, a shift in the distribution of sensory and autonomic fibres in some locations, and up-regulation of several neurotrophins. In women suffering from deep infiltrating endometriosis and bowel endometriosis, in which the anatomical distribution of lesions is generally more closely related to pelvic pain symptoms, endometriotic lesions and surrounding tissues present higher nerve fibre densities compared with peritoneal lesions and endometriomas. More data are needed to fully confirm a direct correlation between fibre density in these locations and the amount of perceived pain. A better correlation between the presence of nerve fibres and pain symptoms seems to exist for eutopic endometrium. However, this appears not to be exclusive to endometriosis. No correlation between elevated neurotrophin levels and pain severity appears to exist, suggesting the involvement of other mediators in the modulation of pain. Conclusions The increased expression of neurotrophic factors and nerve fibres in endometriotic lesions, eutopic endometrium and the peritoneum imply a role of such peripheral changes in the pathogenesis of endometriosis-associated pain. However, a clear link between these findings and pain in patients with endometriosis has so far not been demonstrated.

139 citations


Authors

Showing all 2127 results

NameH-indexPapersCitations
Mark I. McCarthy2001028187898
John P. A. Ioannidis1851311193612
Gonçalo R. Abecasis179595230323
Simon I. Hay165557153307
Robert Plomin151110488588
Ashok Kumar1515654164086
Julian Parkhill149759104736
James F. Wilson146677101883
Jeremy K. Nicholson14177380275
Hugh Watkins12852491317
Erik Ingelsson12453885407
Claudia Langenberg12445267326
Adrian V. S. Hill12258964613
John A. Todd12151567413
Elaine Holmes11956058975
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Massachusetts Medical School
31.8K papers, 1.9M citations

93% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202221
202183
202074
2019134
2018182
2017323