scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Centre for Human Genetics

FacilityOxford, United Kingdom
About: Wellcome Trust Centre for Human Genetics is a facility organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 2122 authors who have published 4269 publications receiving 433899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A mass spectrometry-based non-targeted metabolomics study for association with incident CHD events identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.
Abstract: Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.

223 citations

Journal ArticleDOI
TL;DR: The structural basis for, and the potent signaling effects of, local CD45 and kinase segregation are revealed, and TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.
Abstract: It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.

223 citations

Journal ArticleDOI
TL;DR: Polymorphisms in the interferon-induced genes, MxA, OAS-1 and PKR appear thus associated with HCV outcome.
Abstract: Interferon stimulates the expression of a number of genes encoding enzymes with antiviral activities, including myxovirus resistance-1 (MxA), 2-5-oligoadenylate synthetase 1 (OAS-1) and double-stranded RNA-dependent protein kinase (PKR). We examined whether polymorphisms in these genes influenced the outcome of hepatitis C virus (HCV) infection. We observed a lower frequency of the GG genotype at position −88 in the MxA gene promoter in self-limiting HCV infection (OR=0.56; 95% CI: 0.35–0.8; P=0.010) and in nonresponders to therapy (OR=0.49; 95% CI: 0.25–0.95; P=0.020). This genotype predominantly influenced the outcome of treatment in patients with viral genotype 1 (OR=0.22 95% CI: 0.07–0.67; P=0.002). A polymorphism in the 3′-untranslated region of the OAS-1 gene was associated with outcome of infection (GG genotype less frequent in self-limiting infection: OR=0.43; 95% CI: 0.21–0.86; P=0.010). A polymorphism at position −168 in the promoter region of the PKR gene was associated with self-limiting infection (CT genotype: OR=2.75; 95% CI: 1.45–5.24; P=0.002). Further associations were found with a CGG trinucleotide repeat in the 5′UTR region of the PKR gene. Polymorphisms in the interferon-induced genes, MxA, OAS-1 and PKR appear thus associated with HCV outcome.

223 citations

Journal ArticleDOI
TL;DR: Two regions are suggested as highly likely to harbor risk genes for ADHD: 16p13 and 17p11, Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism.
Abstract: Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is a common, highly heritable neurobehavioral disorder of childhood onset, characterized by hyperactivity, impulsivity, and/or inattention. As part of an ongoing study of the genetic etiology of ADHD, we have performed a genomewide linkage scan in 204 nuclear families comprising 853 individuals and 270 affected sibling pairs (ASPs). Previously, we reported genomewide linkage analysis of a “first wave” of these families composed of 126 ASPs. A follow-up investigation of one region on 16p yielded significant linkage in an extended sample. The current study extends the original sample of 126 ASPs to 270 ASPs and provides linkage analyses of the entire sample, using polymorphic microsatellite markers that define an ∼10-cM map across the genome. Maximum LOD score (MLS) analysis identified suggestive linkage for 17p11 (MLS=2.98) and four nominal regions with MLS values >1.0, including 5p13, 6q14, 11q25, and 20q13. These data, taken together with the fine mapping on 16p13, suggest two regions as highly likely to harbor risk genes for ADHD: 16p13 and 17p11. Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism.

223 citations

Journal ArticleDOI
TL;DR: The first cohort-based analysis of the impact of genetic disorders in craniosynostosis is described and genetic testing of nonsyndromic cases should be targeted to patients with coronal or multisuture synostoses.
Abstract: OBJECTIVES: We describe the first cohort-based analysis of the impact of genetic disorders in craniosynostosis. We aimed to refine the understanding of prognoses and pathogenesis and to provide rational criteria for clinical genetic testing. METHODS: We undertook targeted molecular genetic and cytogenetic testing for 326 children who required surgery because of craniosynostosis, were born in 1993–2002, presented to a single craniofacial unit, and were monitored until the end of 2007. RESULTS: Eighty-four children (and 64 relatives) had pathologic genetic alterations (86% single-gene mutations and 14% chromosomal abnormalities). The FGFR3 P250R mutation was the single largest contributor (24%) to the genetic group. Genetic diagnoses accounted for 21% of all craniosynostosis cases and were associated with increased rates of many complications. Children with an initial clinical diagnosis of nonsyndromic craniosynostosis were more likely to have a causative mutation if the synostoses were unicoronal or bicoronal (10 of 48 cases) than if they were sagittal or metopic (0 of 55 cases; P = .0003). Repeat craniofacial surgery was required for 58% of children with single-gene mutations but only 17% of those with chromosomal abnormalities (P = .01). CONCLUSIONS: Clinical genetic assessment is critical for the treatment of children with craniosynostosis. Genetic testing of nonsyndromic cases (at least for FGFR3 P250R and FGFR2 exons IIIa/c) should be targeted to patients with coronal or multisuture synostoses. Single-gene disorders that disrupt physiologic signaling in the cranial sutures often require reoperation, whereas chromosomal abnormalities follow a more-indolent course, which suggests a different, secondary origin of the associated craniosynostosis.

223 citations


Authors

Showing all 2127 results

NameH-indexPapersCitations
Mark I. McCarthy2001028187898
John P. A. Ioannidis1851311193612
Gonçalo R. Abecasis179595230323
Simon I. Hay165557153307
Robert Plomin151110488588
Ashok Kumar1515654164086
Julian Parkhill149759104736
James F. Wilson146677101883
Jeremy K. Nicholson14177380275
Hugh Watkins12852491317
Erik Ingelsson12453885407
Claudia Langenberg12445267326
Adrian V. S. Hill12258964613
John A. Todd12151567413
Elaine Holmes11956058975
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Massachusetts Medical School
31.8K papers, 1.9M citations

93% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202221
202183
202074
2019134
2018182
2017323