scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The algorithms developed here can effectively identify reassortment events in small viral datasets and can be applied not only to influenza but also to other segmented viruses.
Abstract: Every year the human population encounters epidemic outbreaks of influenza, and history reveals recurring pandemics that have had devastating consequences. The current work focuses on the development of a robust algorithm for detecting influenza strains that have a composite genomic architecture. These influenza subtypes can be generated through a reassortment process, whereby a virus can inherit gene segments from two different types of influenza particles during replication. Reassortant strains are often not immediately recognised by the adaptive immune system of the hosts and hence may be the source of pandemic outbreaks. Owing to their importance in public health and their infectious ability, it is essential to identify reassortant influenza strains in order to understand the evolution of this virus and describe reassortment pathways that may be biased towards particular viral segments. Phylogenetic methods have been used traditionally to identify reassortant viruses. In many studies up to now, the assumption has been that if two phylogenetic trees differ, it is because reassortment has caused them to be different. While phylogenetic incongruence may be caused by real differences in evolutionary history, it can also be the result of phylogenetic error. Therefore, we wish to develop a method for distinguishing between topological inconsistency that is due to confounding effects and topological inconsistency that is due to reassortment. The current work describes the implementation of two approaches for robustly identifying reassortment events. The algorithms rest on the idea of significance of difference between phylogenetic trees or phylogenetic tree sets, and subtree pruning and regrafting operations, which mimic the effect of reassortment on tree topologies. The first method is based on a maximum likelihood (ML) framework (MLreassort) and the second implements a Bayesian approach (Breassort) for reassortment detection. We focus on reassortment events that are found by both methods. We test both methods on a simulated dataset and on a small collection of real viral data isolated in Hong Kong in 1999. The nature of segmented viral genomes present many challenges with respect to disease. The algorithms developed here can effectively identify reassortment events in small viral datasets and can be applied not only to influenza but also to other segmented viruses. Owing to computational demands of comparing tree topologies, further development in this area is necessary to allow their application to larger datasets.

486 citations

Journal ArticleDOI
TL;DR: The panoply of antimicrobial drug resistance genes and mobile genetic elements found suggests that the organism can act as a reservoir of antimacterial drug resistance determinants in a clinical environment, which is an issue of considerable concern.
Abstract: Background Stenotrophomonas maltophilia is a nosocomial opportunistic pathogen of the Xanthomonadaceae. The organism has been isolated from both clinical and soil environments in addition to the sputum of cystic fibrosis patients and the immunocompromised. Whilst relatively distant phylogenetically, the closest sequenced relatives of S. maltophilia are the plant pathogenic xanthomonads.

486 citations

Journal ArticleDOI
TL;DR: The Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes, is presented, providing comprehensive resources for microbiome researchers.
Abstract: Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representatives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome.

485 citations

Journal ArticleDOI
TL;DR: In this article, using single-cell RNA sequencing, the authors determined the transcriptome of more than 1,600 individual microglia cells isolated from the hippocampus of a mouse model of severe neurodegeneration with AD-like phenotypes and of control mice at multiple time points during progression of the disease.

485 citations

Journal ArticleDOI
TL;DR: The literature of C. rodentium is reviewed from its emergence in the mid‐1960s to the most contemporary reports of colonization, pathogenesis, transmission and immunity, providing an excellent in vivo model for A/E lesion forming pathogens.
Abstract: The major classes of enteric bacteria harbour a conserved core genomic structure, common to both commensal and pathogenic strains, that is most likely optimized to a life style involving colonization of the host intestine and transmission via the environment. In pathogenic bacteria this core genome framework is decorated with novel genetic islands that are often associated with adaptive phenotypes such as virulence. This classical genome organization is well illustrated by a group of extracellular enteric pathogens, which includes enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium, all of which use attaching and effacing (A/E) lesion formation as a major mechanism of tissue targeting and infection. Both EHEC and EPEC are poorly pathogenic in mice but infect humans and domestic animals. In contrast, C. rodentium is a natural mouse pathogen that is related to E. coli, hence providing an excellent in vivo model for A/E lesion forming pathogens. C. rodentium also provides a model of infections that are mainly restricted to the lumen of the intestine. The mechanism's by which the immune system deals with such infections has become a topic of great interest in recent years. Here we review the literature of C. rodentium from its emergence in the mid-1960s to the most contemporary reports of colonization, pathogenesis, transmission and immunity.

483 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764