scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
13 Nov 2003-Nature
TL;DR: It is proposed that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.
Abstract: Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.

2,549 citations

Journal ArticleDOI
10 Aug 2011-Nature
TL;DR: In this article, a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, they have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci.
Abstract: Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.

2,511 citations

Journal ArticleDOI
Andre Franke1, Dermot P.B. McGovern2, Jeffrey C. Barrett3, Kai Wang4, Graham L. Radford-Smith5, Tariq Ahmad6, Charlie W. Lees7, Tobias Balschun1, James Lee8, Rebecca L. Roberts9, Carl A. Anderson3, Joshua C. Bis10, Suzanne Bumpstead3, David Ellinghaus1, Eleonora M. Festen11, Michel Georges12, Todd Green13, Talin Haritunians2, Luke Jostins3, Anna Latiano14, Christopher G. Mathew15, Grant W. Montgomery5, Natalie J. Prescott15, Soumya Raychaudhuri13, Jerome I. Rotter2, Philip Schumm16, Yashoda Sharma17, Lisa A. Simms5, Kent D. Taylor2, David C. Whiteman5, Cisca Wijmenga11, Robert N. Baldassano4, Murray L. Barclay9, Theodore M. Bayless18, Stephan Brand19, Carsten Büning20, Albert Cohen21, Jean Frederick Colombel22, Mario Cottone, Laura Stronati, Ted Denson23, Martine De Vos24, Renata D'Incà, Marla Dubinsky2, Cathryn Edwards25, Timothy H. Florin26, Denis Franchimont27, Richard B. Gearry9, Jürgen Glas22, Jürgen Glas19, Jürgen Glas28, André Van Gossum27, Stephen L. Guthery29, Jonas Halfvarson30, Hein W. Verspaget31, Jean-Pierre Hugot32, Amir Karban33, Debby Laukens24, Ian C. Lawrance34, Marc Lémann32, Arie Levine35, Cécile Libioulle12, Edouard Louis12, Craig Mowat36, William G. Newman37, Julián Panés, Anne M. Phillips36, Deborah D. Proctor17, Miguel Regueiro38, Richard K Russell39, Paul Rutgeerts40, Jeremy D. Sanderson41, Miquel Sans, Frank Seibold42, A. Hillary Steinhart43, Pieter C. F. Stokkers44, Leif Törkvist45, Gerd A. Kullak-Ublick46, David C. Wilson7, Thomas D. Walters43, Stephan R. Targan2, Steven R. Brant18, John D. Rioux47, Mauro D'Amato45, Rinse K. Weersma11, Subra Kugathasan48, Anne M. Griffiths43, John C. Mansfield49, Severine Vermeire40, Richard H. Duerr38, Mark S. Silverberg43, Jack Satsangi7, Stefan Schreiber1, Judy H. Cho17, Vito Annese14, Hakon Hakonarson4, Mark J. Daly13, Miles Parkes8 
TL;DR: A meta-analysis of six Crohn's disease genome-wide association studies and a series of in silico analyses highlighted particular genes within these loci implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP.
Abstract: We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10⁻⁸). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.

2,482 citations

Journal ArticleDOI
TL;DR: It is demonstrated that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass.
Abstract: The study of microbial communities has been revolutionised in recent years by the widespread adoption of culture independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. One potential confounder of these sequence-based approaches is the presence of contamination in DNA extraction kits and other laboratory reagents. In this study we demonstrate that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass. Contamination impacts both PCR-based 16S rRNA gene surveys and shotgun metagenomics. We provide an extensive list of potential contaminating genera, and guidelines on how to mitigate the effects of contamination. These results suggest that caution should be advised when applying sequence-based techniques to the study of microbiota present in low biomass environments. Concurrent sequencing of negative control samples is strongly advised.

2,459 citations

Journal ArticleDOI
TL;DR: The SAMtools and BCFtools packages represent a unique collection of tools that have been used in numerous other software projects and countless genomic pipelines and are freely available on GitHub under the permissive MIT licence, free for both noncommercial and commercial use.
Abstract: Background: SAMtools and BCFtools are widely used programs for processing and analysing high-throughput sequencing data. They include tools for file format conversion and manipulation, sorting, querying, statistics, variant calling, and effect analysis amongst other methods. Findings: The first version appeared online 12 years ago and has been maintained and further developed ever since, with many new features and improvements added over the years. The SAMtools and BCFtools packages represent a unique collection of tools that have been used in numerous other software projects and countless genomic pipelines. Conclusion: Both SAMtools and BCFtools are freely available on GitHub under the permissive MIT licence, free for both non-commercial and commercial use. Both packages have been installed >1 million times via Bioconda. The source code and documentation are available from https://www.htslib.org.

2,448 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764