scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This model is used to identify ∼1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for de novo loss-of-function mutations identified in ASD cases, suggesting that the role of de noVO mutations in ASDs might reside in fundamental neurodevelopmental processes.
Abstract: Mark Daly and colleagues present a statistical framework to evaluate the role of de novo mutations in human disease by calibrating a model of de novo mutation rates at the individual gene level. The mutation probabilities defined by their model and list of constrained genes can be used to help identify genetic variants that have a significant role in disease.

952 citations

Journal ArticleDOI
25 Sep 2015-Science
TL;DR: A number of the lessons learned over 5 years of cancer genome sequencing are summarized and discussed and their implications for the understanding of cancer progression and aging are discussed.
Abstract: Spontaneously occurring mutations accumulate in somatic cells throughout a person's lifetime. The majority of these mutations do not have a noticeable effect, but some can alter key cellular functions. Early somatic mutations can cause developmental disorders, whereas the progressive accumulation of mutations throughout life can lead to cancer and contribute to aging. Genome sequencing has revolutionized our understanding of somatic mutation in cancer, providing a detailed view of the mutational processes and genes that drive cancer. Yet, fundamental gaps remain in our knowledge of how normal cells evolve into cancer cells. We briefly summarize a number of the lessons learned over 5 years of cancer genome sequencing and discuss their implications for our understanding of cancer progression and aging.

950 citations

Journal ArticleDOI
TL;DR: Artemis is presented as a tool for integrated visualization and computational analysis of different types of HTS datasets in the context of a reference genome and its corresponding annotation.
Abstract: Motivation: High-throughput sequencing (HTS) technologies have made low-cost sequencing of large numbers of samples commonplace. An explosion in the type, not just number, of sequencing experiments has also taken place including genome re-sequencing, population-scale variation detection, whole transcriptome sequencing and genome-wide analysis of protein-bound nucleic acids. Results: We present Artemis as a tool for integrated visualization and computational analysis of different types of HTS datasets in the context of a reference genome and its corresponding annotation. Availability: Artemis is freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute websites: http://www.sanger.ac.uk/resources/software/artemis/.

950 citations

Journal ArticleDOI
TL;DR: The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.
Abstract: Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the ≈2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: ≈6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC476), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.

950 citations

Journal ArticleDOI
TL;DR: The authors' analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
Abstract: Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.

950 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764