scispace - formally typeset
Search or ask a question
Institution

Wichita State University

EducationWichita, Kansas, United States
About: Wichita State University is a education organization based out in Wichita, Kansas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 4988 authors who have published 9563 publications receiving 253824 citations. The organization is also known as: WSU & Fairmount College.
Topics: Population, Poison control, Health care, Relay, Vortex


Papers
More filters
Journal ArticleDOI
TL;DR: The formation of a long-lived charge-separated state of a self-assembled donor-acceptor tetrad, formed by axial coordination of a fulleropyrrolidine appended with an imidazole coordinating ligand to the zinc center of a subphthalocyanine-triphenylamine-zinc porphyrin, as a charge-stabilizing antenna reaction center mimic in toluene.
Abstract: We report here the formation of a long-lived charge-separated state of a self-assembled donor-acceptor tetrad, formed by axial coordination of a fulleropyrrolidine appended with an imidazole coordinating ligand (C(60)Im) to the zinc center of a subphthalocyanine-triphenylamine-zinc porphyrin (SubPc-TPA-ZnP), as a charge-stabilizing antenna reaction center mimic in toluene. The subphthalocyanine and triphenylamine entities, with their high-energy singlet states, act as an energy-transferring antenna unit to produce a singlet zinc porphyrin. The formation constant for the self-assembled tetrad was determined to be 1.0 x 10(4) M(-1), suggesting a moderately stable complex formation. The geometric and electronic structures of the covalently linked SubPc-TPA-ZnP triad and self-assembled SubPc-TPA-ZnP:C(60)Im tetrad were examined by using an ab initio B3LYP/6-31G method. The majority of the highest occupied frontier molecular orbital was found over the ZnP and TPA entities, whereas the lowest unoccupied molecular orbital was located over the fullerene entity, suggesting the formation of the radical-ion pair (SubPc-TPA-ZnP(*+):C(60)Im(*-)). The redox measurements revealed that the energy level of the radical-ion pair in toluene is located lower than that of the singlet and triplet states of the zinc porphyrin and fullerene entities. The femtosecond transient absorption measurements revealed fast charge separation from the singlet porphyrin to the coordinated C(60)Im with a lifetime of 1.1 ns. Interestingly, slow charge recombination (1.6 x 10(5) s(-1)) and the long lifetime of the charge-separated state (6.6 micros) were obtained in toluene by utilizing the nanosecond transient measurements.

102 citations

Journal ArticleDOI
TL;DR: In this article, a first generation of stars that efficiently depleted lithium in the early halo of stars near the turnoff has been attributed to a cosmological origin, and it has been shown that the observed abundance lies at Δ7Li ~ 0.4 dex below the predictions of big bang nucleosynthesis (BBN).
Abstract: Since the pioneering observations of Spite & Spite in 1982, the constant lithium abundance of metal-poor ([Fe/H] < -1.3) halo stars near the turnoff has been attributed to a cosmological origin. Closer analysis, however, revealed that the observed abundance lies at Δ7Li ~ 0.4 dex below the predictions of big bang nucleosynthesis (BBN). The measurements of deuterium abundances along the lines of sight toward quasars, and the recent data from the Wilkinson Microwave Anisotropy Probe (WMAP), have independently confirmed this gap. We suggest here that part of the discrepancy (from 0.2 to 0.3 dex) is explained by a first generation of stars that efficiently depleted lithium. Assuming that the models for lithium evolution in halo turnoff stars, as well as the Δ7Li, estimates are correct, we infer that between one-third and one-half of the baryonic matter of the early halo (i.e., ~109 M☉) was processed through Population III stars. This new paradigm proposes a very economical solution to the lingering difficulty of understanding the properties of the Spite plateau and its lack of star-to-star scatter down to [Fe/H] = -2.5. It is moreover in agreement both with the absence of lithium in the most iron-poor turnoff star currently known (HE 1327-2326) and also with new trends of the plateau suggesting its low-metallicity edge may be reached around [Fe/H] = -2.5. We discuss the role of turbulent mixing associated with enhanced supernovae explosions in the early interstellar medium in this picture. We suggest how it may explain the small scatter and also other recent observational features of the lithium plateau. Finally, we show that other chemical properties of the extremely metal-poor stars (such as carbon enrichment) are also in agreement with significant Population III processing in the halo, provided these models include mass loss and rotationally induced mixing.

102 citations

Journal ArticleDOI
TL;DR: The LATCH tool is a useful identifies the need for follow-up with breastfeeding mothers at risk for early weaning because of sore nipples, and positively correlated with duration of breastfeeding and to mothers' scores.
Abstract: The authors tested the validity of the LATCH breastfeeding assessment tool, controlling for intervening variables in 133 dyads. LATCH scores, mother's evaluation of an index feed, and intended duration of breastfeeding were assessed postpartum and followed 6 weeks. Women breastfeeding at 6 weeks postpartum had higher LATCH scores (mean +/- SD = 9.3 +/- 0.9) than those who weaned (mean +/- SD = 8.7 +/- 1.0), due to only one measure, breast/nipple comfort. Women who weaned before 6 weeks reported lower breast/nipple comfort (1.5 +/- 0.5) than those who were still breastfeeding at 6 weeks (1.7 +/- 0.5, P < .05). Total LATCH scores accounted for 7.3% of variance in breastfeeding duration. Total LATCH scores positively correlated with duration of breastfeeding (n = 128; r = .26, P = .003) and to mothers' scores (n = 132; r = .58, P = .001). Correlations among LATCH measures ranged from .02 to .51. The LATCH tool is a useful identifies the need for follow-up with breastfeeding mothers at risk for early weaning because of sore nipples.

102 citations

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +979 moreInstitutions (156)
TL;DR: Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

102 citations

Journal ArticleDOI
TL;DR: In this article, various experimental methods devised to measure permeability as a porous material property in composites are reviewed, as well as issues related to these methods and some associated permeability models.
Abstract: Accurate measurement of permeability is critical for fluid flow modeling in porous media. Various experimental methods devised to measure permeability as a porous material property in composites are reviewed. Liquid flow and gas flow methods of permeability measurement for in-plane and transverse directions specifically for fiber-reinforced composites are discussed, as well as issues related to these methods and some associated permeability models. Alternative methods of permeability determination based on cross transport phenomenon are reviewed as well. DOI: 10.1115/1.4001047

101 citations


Authors

Showing all 5021 results

NameH-indexPapersCitations
Herbert A. Simon157745194597
Rui Zhang1512625107917
Frederick Wolfe119417101272
Shunichi Fukuzumi111125652764
Robert Y. Moore9524535941
Maurizio Salaris7641720927
Annie K. Powell7348622020
Gunther Uhlmann7244419560
Danielle S. McNamara7053922142
Jonathan P. Hill6736719271
Francis D'Souza6647716662
Osamu Ito6554917035
Louis J. Guillette6433820263
Karl A. Gschneidner6467522712
Robert Reid5921512097
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Virginia Tech
95.2K papers, 2.9M citations

90% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202259
2021331
2020351
2019325
2018327