Institution
Woods Hole Oceanographic Institution
Nonprofit•Falmouth, Massachusetts, United States•
About: Woods Hole Oceanographic Institution is a(n) nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topic(s): Population & Mantle (geology). The organization has 5685 authors who have published 18396 publication(s) receiving 1202050 citation(s). The organization is also known as: WHOI.
Papers published on a yearly basis
Papers
More filters
Queen's University Belfast1, Collège de France2, English Heritage3, University of Arizona4, University of Sheffield5, University of Oxford6, University of Minnesota7, University of Hohenheim8, University of Kiel9, Lawrence Livermore National Laboratory10, University of Bergen11, ETH Zurich12, University of Waikato13, Woods Hole Oceanographic Institution14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Cornell University16, University of Bristol17, University of Glasgow18, University of California, Irvine19, University of New South Wales20
TL;DR: In this paper, Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
Abstract: Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
13,118 citations
University of Wisconsin-Madison1, University of Maryland, College Park2, Carnegie Institution for Science3, National Center for Atmospheric Research4, University of Alaska Fairbanks5, Woods Hole Oceanographic Institution6, Stanford University7, University of Bristol8, University of Illinois at Urbana–Champaign9
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
8,813 citations
TL;DR: A complementary DNA for the Aequorea victoria green fluorescent protein produces a fluorescent product when expressed in prokaryotic or eukaryotic cells, which can be used to monitor gene expression and protein localization in living organisms.
Abstract: A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.
6,809 citations
01 Jan 1975
TL;DR: The methods suffice for the most fastidious algae now routinely cultivable, and simplifications indicated for less demanding species are easily made; for example, omission of silicate for plants other than diatoms.
Abstract: These pages describe relatively simple and reliable methods for the culture of marine phytoplankton species useful for feeding marine invertebrates. The methods suffice for the most fastidious algae now routinely cultivable, and simplifications indicated for less demanding species are easily made; for example, omission of silicate for plants other than diatoms. Certain modifications of techniques, ancillary methods, and precautions will be treated briefly because questions often arise concerning them, but documentation will be minimal and hopefully restricted to publications readily available.
4,592 citations
TL;DR: 13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract: Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
3,898 citations
Authors
Showing all 5685 results
Name | H-index | Papers | Citations |
---|---|---|---|
Roberto Romero | 151 | 1516 | 108321 |
Jerry M. Melillo | 134 | 383 | 68894 |
Timothy J. Mitchison | 133 | 404 | 66418 |
Xiaoou Tang | 132 | 553 | 94555 |
Jillian F. Banfield | 127 | 562 | 60687 |
Matthew Jones | 125 | 1161 | 96909 |
Rodolfo R. Llinás | 120 | 386 | 52828 |
Ronald D. Vale | 117 | 342 | 49020 |
Scott C. Doney | 111 | 406 | 59218 |
Alan G. Marshall | 107 | 1060 | 46904 |
Peter K. Smith | 107 | 855 | 49174 |
Donald E. Canfield | 105 | 298 | 43270 |
Edward F. DeLong | 102 | 262 | 42794 |
Eric A. Davidson | 101 | 281 | 45511 |
Gary G. Borisy | 101 | 248 | 38195 |