scispace - formally typeset
Search or ask a question

Showing papers by "Woods Hole Oceanographic Institution published in 2003"


Journal ArticleDOI
TL;DR: The Coupled Ocean-Atmosphere Response Experiment (COARE) bulk algorithm was published in 1996, and it has become one of the most frequently used algorithms in the air-sea interaction community.
Abstract: In 1996, version 2.5 of the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm was published, and it has become one of the most frequently used algorithms in the air–sea interaction community. This paper describes steps taken to improve the algorithm in several ways. The number of iterations to solve for stability has been shortened from 20 to 3, and adjustments have been made to the basic profile stability functions. The scalar transfer coefficients have been redefined in terms of the mixing ratio, which is the fundamentally conserved quantity, rather than the measured water vapor mass concentration. Both the velocity and scalar roughness lengths have been changed. For the velocity roughness, the original fixed value of the Charnock parameter has been replaced by one that increases with wind speeds of between 10 and 18 m s−1. The scalar roughness length parameterization has been simplified to fit both an early set of NOAA/Environmental Technology Laboratory (ETL) experiments and...

2,097 citations


Journal ArticleDOI
TL;DR: An unstructured grid, finite-volume, three-dimensional (3D) primitive equation ocean model has been developed for the study of coastal oceanic and estuarine circulation as discussed by the authors.
Abstract: An unstructured grid, finite-volume, three-dimensional (3D) primitive equation ocean model has been developed for the study of coastal oceanic and estuarine circulation. The model consists of momentum, continuity, temperature, salinity, and density equations and is closed physically and mathematically using the Mellor and Yamada level-2.5 turbulent closure submodel. The irregular bottom slope is represented using a s-coordinate transformation, and the horizontal grids comprise unstructured triangular cells. The finite-volume method (FVM) used in this model combines the advantages of a finite-element method (FEM) for geometric flexibility and a finite-difference method (FDM) for simple discrete computation. Currents, temperature, and salinity in the model are computed in the integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat in the coastal region with complex geometry. The model was applied to the Bohai Sea, a semienclosed coastal ocean, and the Satilla River, a Georgia estuary characterized by numerous tidal creeks and inlets. Compared with the results obtained from the finite-difference model (ECOM-si), the new model produces a better simulation of tidal elevations and residual currents, especially around islands and tidal creeks. Given the same initial distribution of temperature in the Bohai Sea, the FVCOM and ECOM-si models show similar distributions of temperature and stratified tidal rectified flow in the interior region away from the coast and islands, but FVCOM appears to provide a better simulation of temperature and currents around the islands, barriers, and inlets with complex topography.

1,436 citations


Journal ArticleDOI
28 Aug 2003-Nature
TL;DR: The genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Pro chlorococcus lineage are compared and reveal dynamic genomes that are constantly changing in response to myriad selection pressures.
Abstract: The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph1. It numerically dominates the phytoplankton in the tropical and subtropical oceans2,3, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage4 and that have different minimum, maximum and optimal light intensities for growth5. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.

1,106 citations


Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: An ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults is revealed, and it is found that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions.
Abstract: New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr-1, though their characteristics are commonly found at rates up to approximately 20 mm yr-1. The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.

856 citations


Journal ArticleDOI
TL;DR: In this article, a 6-year sediment trap time series in the Sargasso Sea was used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature.
Abstract: [1] Paired Mg/Ca and δ18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of δ18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis ≈ G. bulloides > G. ruber ≈ G. sacculifer ≈ other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The ∼9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.

846 citations


Journal ArticleDOI
TL;DR: In this paper, a novel archival tag, called the DTAG, has been developed to monitor the behavior of marine mammals, and their response to sound, continuously throughout the dive cycle.
Abstract: Definitive studies on the response of marine mammals to anthropogenic sound are hampered by the short surface time and deep-diving lifestyle of many species. A novel archival tag, called the DTAG, has been developed to monitor the behavior of marine mammals, and their response to sound, continuously throughout the dive cycle. The tag contains a large array of solid-state memory and records continuously from a built-in hydrophone and suite of sensors. The sensors sample the orientation of the animal in three dimensions with sufficient speed and resolution to capture individual fluke strokes. Audio and sensor recording is synchronous so the relative timing of sounds and motion can be determined precisely. The DTAG has been attached to more than 30 northern right whales (Eubalaena glacialis) and 20 sperm whales (Physeter macrocephalus) with recording duration of up to 12 h per deployment. Several deployments have included sound playbacks to the tagged whale and a transient response to at least one playback is evident in the tag data.

771 citations


Journal ArticleDOI
14 Mar 2003-Science
TL;DR: A seasonally resolved record of titanium shows that the collapse of Mayan civilization in the Terminal Classic Period occurred during an extended regional dry period, punctuated by more intense multi-year droughts centered at approximately 810, 860, and 910 A.D as mentioned in this paper.
Abstract: In the anoxic Cariaco Basin of the southern Caribbean, the bulk titanium content of undisturbed sediment reflects variations in riverine input and the hydrological cycle over northern tropical South America. A seasonally resolved record of titanium shows that the collapse of Maya civilization in the Terminal Classic Period occurred during an extended regional dry period, punctuated by more intense multiyear droughts centered at approximately 810, 860, and 910 A.D. These new data suggest that a century-scale decline in rainfall put a general strain on resources in the region, which was then exacerbated by abrupt drought events, contributing to the social stresses that led to the Maya demise.

761 citations


Journal ArticleDOI
TL;DR: The phase relations of primitive andesites and basaltic andesite from the Mt Shasta region, N California have been determined over a range of pressure and temperature conditions and H2O contents as mentioned in this paper.
Abstract: The phase relations of primitive magnesian andesites and basaltic andesites from the Mt Shasta region, N California have been determined over a range of pressure and temperature conditions and H2O contents The experimental results are used to explore the influence of H2O and pressure on fractional crystallization and mantle melting behavior in subduction zone environments At 200-MPa H2O-saturated conditions the experimentally determined liquid line of descent reproduces the compositional variation found in the Mt Shasta region lavas This calc-alkaline differentiation trend begins at the lowest values of FeO*/MgO and the highest SiO2 contents found in any arc magma system and exhibits only a modest increase in FeO*/MgO with increasing SiO2 We propose a two-stage process for the origin of these lavas (1) Extensive hydrous mantle melting produces H2O-rich (>45--6 wt% H2O) melts that are in equilibrium with a refractory harzburgite (olivine + orthopyroxene) residue Trace elements and H2O are contributed from a slab-derived fluid and/or melt (2) This mantle melt ascends into the overlying crust and undergoes fractional crystallization Crustal-level differentiation occurs under near-H2O saturated conditions producing the distinctive high SiO2 and low FeO*/MgO characteristics of these calc-alkaline andesite and dacite lavas In a subset of Mt Shasta region lavas, magnesian pargasitic amphibole provides evidence of high pre-eruptive H2O contents (>10 wt% H2O) and lower crustal crystallization pressures (800 MPa) Igneous rocks that possess major and trace element characteristics similar to those of the Mt Shasta region lavas are found at Adak, Aleutians, Setouchi Belt, Japan, the Mexican Volcanic Belt, Cook Island, Andes and in Archean trondhjemite--tonalite--granodiorite suites (TTG suites) We propose that these magmas also form by hydrous mantle melting

645 citations


Journal ArticleDOI
09 Oct 2003-Nature
TL;DR: Experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG is presented, suggesting that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes.
Abstract: The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate1,2. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic (‘grey gneiss’) and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks3,4,5,6,7. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of ‘average’ Archaean TTG8, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle9,10, notably in intraoceanic arc settings in the forearc11,12 and back-arc13,14 regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking15 and tectonic accretion16 of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, ‘arc-like’ crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

635 citations


Journal ArticleDOI
28 Aug 2003-Nature
TL;DR: The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages, and is more of a generalist than two related marine cyanobacteria.
Abstract: Marine unicellular cyanobacteria are responsible for an estimated 20–40% of chlorophyll biomass and carbon fixation in the oceans1. Here we have sequenced and analysed the 2.4-megabase genome of Synechococcus sp. strain WH8102, revealing some of the ways that these organisms have adapted to their largely oligotrophic environment. WH8102 uses organic nitrogen and phosphorus sources and more sodium-dependent transporters than a model freshwater cyanobacterium. Furthermore, it seems to have adopted strategies for conserving limited iron stores by using nickel and cobalt in some enzymes, has reduced its regulatory machinery (consistent with the fact that the open ocean constitutes a far more constant and buffered environment than fresh water), and has evolved a unique type of swimming motility. The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages. The genetic material contributed by horizontal gene transfer includes genes involved in the modification of the cell surface and in swimming motility. On the basis of its genome, WH8102 is more of a generalist than two related marine cyanobacteria2.

634 citations


Book ChapterDOI
TL;DR: Time-series studies of natural and implanted deep- sea whale falls off California, USA indicate that bathyal carcasses pass through at least three successional stages:
Abstract: The falls of large whales (30-160 t adult body weight) yield massive pulses of labile organic matter to the deep-sea floor While scientists have long speculated on the ecological roles of such concentrated food inputs, observations have accumulated since the 1850s to suggest that deep-sea whale falls support a widespread, characteristic fauna Interest in whale- fall ecology heightened with the discovery in 1989 of a chemoautotrophic assemblage on a whale skeleton in the northeast Pacific; related communities were soon reported from whale falls in other bathyal and abyssal Pacific and Atlantic sites, and from 30 mya (million years ago) in the northeast Pacific fossil record Recent time-series studies of natural and implanted deep- sea whale falls off California, USA indicate that bathyal carcasses pass through at least three successional stages:

Journal ArticleDOI
18 Dec 2003-Nature
TL;DR: A comparison of salinities on a long transect through the western basins of the Atlantic Ocean between the 1950s and the 1990s is presented, suggesting shifts in the oceanic distribution of fresh and saline waters are occurring worldwide in ways that suggest links to global warming and possible changes in the hydrologic cycle of the Earth.
Abstract: The oceans are a global reservoir and redistribution agent for several important constituents of the Earth's climate system, among them heat, fresh water and carbon dioxide. Whereas these constituents are actively exchanged with the atmosphere, salt is a component that is approximately conserved in the ocean. The distribution of salinity in the ocean is widely measured, and can therefore be used to diagnose rates of surface freshwater fluxes, freshwater transport and local ocean mixing--important components of climate dynamics. Here we present a comparison of salinities on a long transect (50 degrees S to 60 degrees N) through the western basins of the Atlantic Ocean between the 1950s and the 1990s. We find systematic freshening at both poleward ends contrasted with large increases of salinity pervading the upper water column at low latitudes. Our results extend a growing body of evidence indicating that shifts in the oceanic distribution of fresh and saline waters are occurring worldwide in ways that suggest links to global warming and possible changes in the hydrologic cycle of the Earth.

Journal ArticleDOI
28 Aug 2003-Nature
TL;DR: The isolation of cyanophages that infect Prochlorococcus is reported, and it is hypothesized that gradients in cyanobacterial population diversity, growth rates, and/or the incidence of lysogeny underlie these trends.
Abstract: Prochlorococcus is the numerically dominant phototroph in the tropical and subtropical oceans, accounting for half of the photosynthetic biomass in some areas1,2. Here we report the isolation of cyanophages that infect Prochlorococcus, and show that although some are host-strain-specific, others cross-infect with closely related marine Synechococcus as well as between high-light- and low-light-adapted Prochlorococcus isolates, suggesting a mechanism for horizontal gene transfer. High-light-adapted Prochlorococcus hosts yielded Podoviridae exclusively, which were extremely host-specific, whereas low-light-adapted Prochlorococcus and all strains of Synechococcus yielded primarily Myoviridae, which has a broad host range. Finally, both Prochlorococcus and Synechococcus strain-specific cyanophage titres were low ( 105 cells ml-1). These low titres in areas of high total host cell abundance seem to be a feature of open ocean ecosystems. We hypothesize that gradients in cyanobacterial population diversity, growth rates, and/or the incidence of lysogeny underlie these trends.

Journal ArticleDOI
TL;DR: In this article, a process-based facies model for asymmetric wave-influenced deltas predicts significant river-borne muds with potentially lower quality reservoir facies in prodelta and downdrift areas, and better quality sand in updrift areas.
Abstract: A process-based facies model for asymmetric wave-influenced deltas predicts significant river-borne muds with potentially lower quality reservoir facies in prodelta and downdrift areas, and better quality sand in updrift areas. Many ancient barrier-lagoon systems and ‘offshore bars’ may be better reinterpreted as components of large-scale asymmetric wave-influenced deltaic systems. The proposed model is based on a re-evaluation of several modern examples. An asymmetry index A is defined as the ratio between the net longshore transport rate at the mouth (in m 3 year )1 ) and river discharge (in 10 6 m 3 month )1 ). Symmetry is favoured in deltas with an index below 200 (e.g. Tiber, lobes of the Godavari delta, Rosetta lobe of the Nile, Ebro), whereas deltas with a higher index are asymmetric (e.g. Danube ‐ Sf. Gheorghe lobe, Brazos, Damietta lobe of the Nile). Periodic deflection of the river mouth for significant distances in the downdrift direction occurs in extreme cases of littoral drift dominance (e.g. Mahanadi), resulting in a series of randomly distributed, quasi-parallel series of sand spits and channel fills. Asymmetric deltas show variable proportions of river-, wave- and tide-dominated facies both among and within their lobes. Bayhead deltas, lagoons and barrier islands form naturally in prograding asymmetric deltas and are not necessarily associated with transgressive systems. This complexity underlines the necessity of interpreting ancient depositional systems in a larger palaeogeographic context.

Journal ArticleDOI
20 Nov 2003-Nature
TL;DR: These findings suggest that petroleum generation and stability is influenced by subsurface chemical environments, and is a simple function of time, temperature and the composition of sedimentary organic matter.
Abstract: Petroleum deposits form as a consequence of the increased temperatures that accompany progressive burial of organic matter deep within sedimentary basins. Recent advances in petroleum geochemistry suggest that inorganic sedimentary components participate in organic transformations associated with this process. Water is particularly important because it facilitates reaction mechanisms not available in dry environments, and may contribute hydrogen and oxygen for the formation of hydrocarbons and oxygenated alteration products. These findings suggest that petroleum generation and stability is influenced by subsurface chemical environments, and is a simple function of time, temperature and the composition of sedimentary organic matter.

Journal ArticleDOI
TL;DR: The existence of unusually large fluctuations in the Neoproterozoic (1,000-543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle as mentioned in this paper.
Abstract: The existence of unusually large fluctuations in the Neoproterozoic (1,000–543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle. To analyze these fluctuations, we examine records of both the isotopic content of carbonate carbon and the fractionation between carbonate and marine organic carbon. Together, these are inconsistent with conventional, steady-state models of the carbon cycle. The records can be well understood, however, as deriving from the nonsteady dynamics of two reactive pools of carbon. The lack of a steady state is traced to an unusually large oceanic reservoir of organic carbon. We suggest that the most significant of the Neoproterozoic negative carbon-isotopic excursions resulted from increased remineralization of this reservoir. The terminal event, at the Proterozoic–Cambrian boundary, signals the final diminution of the reservoir, a process that was likely initiated by evolutionary innovations that increased export of organic matter to the deep sea.

01 Dec 2003
TL;DR: It is suggested that the most significant of the Neoproterozoic negative carbon-isotopic excursions resulted from increased remineralization of this reservoir, a process that was likely initiated by evolutionary innovations that increased export of organic matter to the deep sea.
Abstract: The existence of unusually large fluctuations in the Neoproterozoic (1,000–543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle. To analyze these fluctuations, we examine records of both the isotopic content of carbonate carbon and the fractionation between carbonate and marine organic carbon. Together, these are inconsistent with conventional, steady-state models of the carbon cycle. The records can be well understood, however, as deriving from the nonsteady dynamics of two reactive pools of carbon. The lack of a steady state is traced to an unusually large oceanic reservoir of organic carbon. We suggest that the most significant of the Neoproterozoic negative carbon-isotopic excursions resulted from increased remineralization of this reservoir. The terminal event, at the Proterozoic–Cambrian boundary, signals the final diminution of the reservoir, a process that was likely initiated by evolutionary innovations that increased export of organic matter to the deep sea.

Journal ArticleDOI
21 Mar 2003-Science
TL;DR: A model that accounts for fluid accelerations in waves predicts the onshore sandbar migration observed on an ocean beach, and the location of the maximum acceleration-induced transport moves shoreward with the sandbar, resulting in feedback between waves and morphology that drives the bar shoreward until conditions change.
Abstract: Onshore sediment transport and sandbar migration are important to the morphological evolution of beaches but are not well understood. Here, a model that accounts for fluid accelerations in waves predicts the onshore sandbar migration observed on an ocean beach. In both the observations and the model, the location of the maximum acceleration-induced transport moves shoreward with the sandbar, resulting in feedback between waves and morphology that drives the bar shoreward until conditions change. A model that combines the effects of transport by waves and mean currents simulated both onshore and offshore bar migration observed over a 45-day period.

Journal ArticleDOI
05 Sep 2003-Science
TL;DR: A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.
Abstract: A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within ±30 to ±90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3° to 4°C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.

Journal ArticleDOI
TL;DR: In this article, the authors used two models, PnET-BGC and WATERSN, to evaluate management strategies for reducing anthropogenic nitrogen inputs to forests and estuaries, respectively.
Abstract: The northeastern United States receives elevated inputs of anthropogenic nitrogen (N) largely from net imports of food and atmospheric deposition, with lesser inputs from fertilizer, net feed imports, and N fixation associated with leguminous crops. Ecological consequences of elevated N inputs to the Northeast include tropospheric ozone formation, ozone damage to plants, the alteration of forest N cycles, acidification of surface waters, and eutrophication in coastal waters. We used two models, PnET-BGC and WATERSN, to evaluate management strategies for reducing N inputs to forests and estuaries, respectively. Calculations with PnET-BGC suggest that aggressive reductions in N emissions alone will not result in marked improvements in the acid–base status of forest streams. WATERSN calculations showed that management scenarios targeting removal of N by wastewater treatment produce larger reductions in estuarine N loading than scenarios involving reductions in agricultural inputs or atmospheric emis...

Journal ArticleDOI
TL;DR: Corals open an exceptional window into many phenomena of geological, geochemical, climatic, and paleontological interest as discussed by the authors, and they also represent a testing ground for basic ideas about mineralogy and geochemistry.
Abstract: Corals open an exceptional window into many phenomena of geological, geochemical, climatic, and paleontological interest. From the Paleozoic to the present, corals provide some of the finest high-resolution archives of marine conditions. Corals are likewise exceptional for chronometric purposes, and even the terrestrial 14C timescale has now been calibrated against coral 230Th/234U. Corals also represent a testing ground for basic ideas about mineralogy and geochemistry. The shapes, sizes, and organization of skeletal crystals have been attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The coupling between calcification and photosynthesis in symbiotic corals is likewise attributed to everything from photosynthetic alkalinization of the water, to efforts by the coral to prevent photosynthetic alkalinization. Corals also leave a significant geochemical imprint on the oceans. Their aragonite skeletons accept about 10 times more strontium than does calcite, hence the proportion of marine aragonite precipitation affects the oceanic chemical balance. Biological carbonates represent the biosphere’s largest carbon reservoir, hence calcareous organisms affect the ocean’s pH, CO2 content, and ultimately global temperatures through the greenhouse gas connection. Finally, corals present some geochemical puzzles for ecology and conservation. How do symbiotic corals obtain nutrients in some of the most nutrient deficient parts of the planet? Are global geochemical changes partially responsible for the widespread declines in coral reefs during recent decades? We will address many of these issues, but will concentrate on coral skeletal structure and calcification mechanism. These topics bear most directly on the biomineralization process and generally affect the choice of skeletal materials and analytical techniques used in geochemical investigations. The coral reef is probably the planet’s most spectacular biomineralization product. These grand and complex ecosystems build on the accumulated skeletal debris of countless generations of organisms, especially calcareous algae and symbiotic …

Journal ArticleDOI
26 Jun 2003-Nature
TL;DR: Observations of the Gakkel ridge demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis.
Abstract: A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.

Journal ArticleDOI
TL;DR: In this article, a mechanism for vital effects in these deep-sea corals that is based on a thermodynamic response to a biologically induced pH gradient in the calcifying region is proposed.

Journal ArticleDOI
TL;DR: In this article, the authors assess the oxidation state of altered ocean crust and estimate the magnitude of microbial biomass production that might be supported by oxidative and nonoxidative alteration, and estimate that 50% of Fe oxidation may be attributed to hydrolysis, producing 4.5 ± 3.0 × 1011 mol H2/yr.

Journal ArticleDOI
TL;DR: Characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dSR sequences from marine sediments in Aarhus Bay and Kysing Fj
Abstract: The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

Journal ArticleDOI
TL;DR: This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.
Abstract: We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.

Journal ArticleDOI
TL;DR: The development of quantitative zooplankton collecting systems began with Hensen, 1887, and was also an era in which many of the fundamental questions about the structure and dynamics of the plankton in the worlds oceans were first posed.

Journal ArticleDOI
20 Mar 2003-Nature
TL;DR: Investigation of changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene finds that deep-water production varied on a centennial–millennial timescale, which may hint at a contribution to climate change over this period.
Abstract: The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times1 and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch)2,3,4. Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial–millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.

Journal ArticleDOI
TL;DR: In this paper, two atmospheric general circulation models, the ECHAM-4 and the GISS II models, were used to analyze the interannual variability of δ18O in precipitation over the tropical Americas.
Abstract: [1] We use two atmospheric general circulation models (AGCMs), the ECHAM-4 and the GISS II models, to analyze the interannual variability of δ18O in precipitation over the tropical Americas. Several different simulations with isotopic tracers forced with observed global sea surface temperatures (SST) between 1950 and 1998 reveal the influence of varying temperature, precipitation amount, and moisture source contributions on the predicted δ18O distribution. Observational evidence from climatic (NCEP-NCAR) and sparse stable isotope (IAEA-GNIP) data is used to evaluate model performance. The models capture the essential features of surface climate over the tropical Americas in terms of both their spatial and temporal characteristics. Using a low-resolution model (GISS II), adjusted to provide a more realistic Andean topography, or a higher-resolution model (ECHAM-4 T106) leads to an improved δ18O distribution over the tropical Americas with an altitude effect comparable to observations. Water vapor transport and gradual rainout and increasingly depleted composition of water vapor along its trajectory are correctly simulated in both models, although the ECHAM model appears to underestimate the continentality effect over the Amazon basin. A significant dependence of δ18O on the precipitation amount is apparent in both models, in accordance with observations, while the influence of temperature seems to be less significant in most regions and is accurately reproduced by the ECHAM model only. Over most regions, however, the δ18O signal in precipitation is influenced by a combination of factors, such as precipitation amount, temperature, moisture source variability, and atmospheric circulation changes. Over parts of the tropical Americas, the δ18O signal is therefore also significantly correlated with ENSO because ENSO is an integrator of many factors affecting the δ18O composition of precipitation.

Journal ArticleDOI
10 Jul 2003-Nature
TL;DR: It is demonstrated that deep convection can occur in this region when the North Atlantic Oscillation Index is high, which is consistent with observations and differs significantly from those known to operate in the Labrador and Mediterranean seas.
Abstract: Open-ocean deep convection, one of the processes by which deep waters of the world's oceans are formed, is restricted to a small number of locations (for example, the Mediterranean and Labrador seas). Recently, the southwest Irminger Sea has been suggested as an additional location for open-ocean deep convection. The deep water formed in the Irminger Sea has the characteristic temperature and salinity of the water mass that fills the mid-depth North Atlantic Ocean, which had been believed to be formed entirely in the Labrador basin. Here we show that the most likely cause of the convection in the Irminger Sea is a low-level atmospheric jet known as the Greenland tip jet, which forms periodically in the lee of Cape Farewell, Greenland, and is associated with elevated heat flux and strong wind stress curl. Using a history of tip-jet events derived from meteorological land station data and a regional oceanic numerical model, we demonstrate that deep convection can occur in this region when the North Atlantic Oscillation Index is high, which is consistent with observations. This mechanism of convection in the Irminger Sea differs significantly from those known to operate in the Labrador and Mediterranean seas.