scispace - formally typeset
Search or ask a question

Showing papers by "Woods Hole Oceanographic Institution published in 2010"


Journal ArticleDOI
03 Sep 2010-Science
TL;DR: Results from 22 years of plankton tows in the North Atlantic showed the pattern of plastics accumulation was indeed as predicted by theories of ocean circulation, but, despite the steady increase in plastic production and disposal, the concentration of plastic debris had not increased and no trend in plastic concentration was observed in the region of highest accumulation.
Abstract: Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

1,074 citations


Journal ArticleDOI
TL;DR: The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 is reported, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria.
Abstract: Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.

825 citations


Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants.
Abstract: Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

714 citations


Journal ArticleDOI
08 Oct 2010-Science
TL;DR: Results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation.
Abstract: The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation. Samples collected from within the plume reveal monoaromatic petroleum hydrocarbon concentrations in excess of 50 micrograms per liter. These data indicate that monoaromatic input to this plume was at least 5500 kilograms per day, which is more than double the total source rate of all natural seeps of the monoaromatic petroleum hydrocarbons in the northern Gulf of Mexico. Dissolved oxygen concentrations suggest that microbial respiration rates within the plume were not appreciably more than 1 micromolar oxygen per day.

696 citations


Journal ArticleDOI
TL;DR: A review of deep-sea habitats and their fauna can be found in this paper, where the authors discuss threats from anthropogenic activities to deep sea habitats and faunal communities.
Abstract: . The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000–3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, are promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems – such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering – is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop robust and efficient conservation and management options.

622 citations


Journal ArticleDOI
TL;DR: In this paper, changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models.
Abstract: Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

560 citations


Journal ArticleDOI
TL;DR: This study reports the first inventory of physical properties of individual plastic debris in the North Atlantic collected from surface net tows on expeditions from Cape Cod, Massachusetts to the Caribbean Sea between 1991 and 2007, suggesting that plastic particles are modified during their residence at sea.

490 citations


Book ChapterDOI
01 Jan 2010
TL;DR: In this paper, the authors demonstrated that by comparing the isotope values of an animal and its local prey or environment, the animal's movements can be estimated, given that isotopic variation exists between habitats.
Abstract: The stable isotope composition of animal tissues can provide intrinsic tags to study the foraging and migratory ecology of predators in the open ocean. Chapter 13 (this volume) demonstrated that by comparing the isotope values of an animal and its local prey or environment, the animal’s movements can be estimated, given that isotopic variation exists between habitats. The utility of using geographical variations in stable isotopes values, or isoscapes to study the movements of marine predators has been limited because of our lack of knowledge on the spatial variation of the carbon, nitrogen, and oxygen isotope values in the open ocean.

424 citations


Journal ArticleDOI
16 Jul 2010-Science
TL;DR: It is shown that steadily rising SSTs, not ocean acidification, are already driving dramatic changes in the growth of an important reef-building coral in the central Red Sea, and that this coral could cease growing altogether by 2070 should the current warming trend continue.
Abstract: Sea surface temperature (SST) across much of the tropics has increased by 0.4° to 1°C since the mid-1970s. A parallel increase in the frequency and extent of coral bleaching and mortality has fueled concern that climate change poses a major threat to the survival of coral reef ecosystems worldwide. Here we show that steadily rising SSTs, not ocean acidification, are already driving dramatic changes in the growth of an important reef-building coral in the central Red Sea. Three-dimensional computed tomography analyses of the massive coral Diploastrea heliopora reveal that skeletal growth of apparently healthy colonies has declined by 30% since 1998. The same corals responded to a short-lived warm event in 1941/1942, but recovered within 3 years as the ocean cooled. Combining our data with climate model simulations by the Intergovernmental Panel on Climate Change, we predict that should the current warming trend continue, this coral could cease growing altogether by 2070.

414 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR) and find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity.
Abstract: . Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years). Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

391 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present observational estimates of desert dust based on pa- leodata proxies showing a doubling of the amount of dust during the 20th century over much, but not all the globe.
Abstract: Desert dust perturbs climate by directly and in- directly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and tempera- ture, in addition to modifying ocean and land biogeochem- istry. While we know that desert dust is sensitive to pertur- bations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on pa- leodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these ob- servational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of at- mosphere) over the 20th century to be 0.14± 0.11 W/m 2 (1990-1999 vs. 1905-1914). The estimated radiative change

Journal ArticleDOI
TL;DR: In this article, the role of ocean-atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability.
Abstract: Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: There is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude ‘snowball Earth’ glaciations.
Abstract: Phosphorus is generally thought to be a limiting nutrient of primary productivity in the oceans, and is important in regulating the redox state of the ocean–atmosphere system. Planavsky et al. use the ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks through time to evaluate the evolution of the marine phosphate reservoir. They find relatively constant phosphate concentrations during the past 542 million years of Earth's history. The data are also indicative of high dissolved phosphate concentrations in the aftermath of the 'snowball Earth' glaciations around 700 million years ago, which could have led to high rates of primary productivity, organic carbon burial and an increase in atmospheric oxygen levels, paving the way for the rise of metazoan life. Phosphorus is a biolimiting nutrient that is important in regulating the redox state of the ocean–atmosphere system. Here, the ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks through time has been used to evaluate the evolution of the marine phosphate reservoir. Phosphate concentrations have been relatively constant over the past 542 million years of Earth's history, but were high in the aftermath of the 'snowball Earth' glaciations some 750 to 635 million years ago, with implications for the rise of metazoan life. Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean–atmosphere system1. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated2,3,4,5. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth’s history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude ‘snowball Earth’ glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans6,7. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

Journal ArticleDOI
TL;DR: Natural abundance stable isotope ratios in nitrate (NO(3)(-)) and nitrous oxide (N(2)O) were used to evaluate the importance of nitrification over longer time scales and calculate that nitrification could produce between 0.45 and 2.93 micromol m(-2) day(-1) N( 2)O in the central California Current.
Abstract: A combination of stable isotope and molecular biological approaches was used to determine the activity, abundance and diversity of nitrifying organisms in the central California Current. Using (15)NH(4)(+) incubations, nitrification was detectable in the upper water column down to 500 m; maximal rates were observed just below the euphotic zone. Crenarchaeal and betaproteobacterial ammonia monooxygenase subunit A genes (amoA), and 16S ribosomal RNA (rRNA) genes of Marine Group I Crenarchaeota and a putative nitrite-oxidizing genus, Nitrospina, were quantified using quantitative PCR. Crenarchaeal amoA abundance ranged from three to six genes ml(-1) in oligotrophic surface waters to > 8.7 x 10(4) genes ml(-1) just below the core of the California Current at 200 m depth. Bacterial amoA abundance was lower than archaeal amoA and ranged from below detection levels to 400 genes ml(-1). Nitrification rates were not directly correlated to bacterial or archaeal amoA abundance. Archaeal amoA and Marine Group I crenarchaeal 16S rRNA gene abundances were correlated with Nitrospina 16S rRNA gene abundance at all stations, indicating that similar factors may control the distribution of these two groups. Putatively shallow water-associated archaeal amoA types ('Cluster A') decreased in relative abundance with depth, while a deep water-associated amoA type ('Cluster B') increased with depth. Although some Cluster B amoA sequences were found in surface waters, expressed amoA gene sequences were predominantly from Cluster A. Cluster B amoA transcripts were detected between 100 and 500 m depths, suggesting an active role in ammonia oxidation in the mesopelagic. Expression of marine Nitrosospira-like bacterial amoA genes was detected throughout the euphotic zone down to 200 m. Natural abundance stable isotope ratios (delta(15)N and delta(18)O) in nitrate (NO(3)(-)) and nitrous oxide (N(2)O) were used to evaluate the importance of nitrification over longer time scales. Using an isotope mass balance model, we calculate that nitrification could produce between 0.45 and 2.93 micromol m(-2) day(-1) N(2)O in the central California Current, or approximately 1.5-4 times the local N(2)O flux from deep water.

Journal ArticleDOI
TL;DR: In this paper, the authors present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations.

Journal ArticleDOI
TL;DR: In this article, the authors show that subtropical waters that reside year-round in the shelf ocean off Greenland continuously enter a large glacial fjord in East Greenland and contribute to melting at the glacier terminus.
Abstract: The recent rapid increase in mass loss from the Greenland ice sheet is primarily attributed to an acceleration of outlet glaciers. Oceanographic data obtained in summer 2008 show that subtropical waters that reside year-round in the shelf ocean off Greenland continuously enter a large glacial fjord in East Greenland and contribute to melting at the glacier terminus. The recent rapid increase in mass loss from the Greenland ice sheet1,2 is primarily attributed to an acceleration of outlet glaciers3,4,5. One possible cause of this acceleration is increased melting at the ice–ocean interface6,7, driven by the synchronous warming8,9,10 of subtropical waters offshore of Greenland. However, because of the lack of observations from Greenland’s glacial fjords and our limited understanding of their dynamics, this hypothesis is largely untested. Here we present oceanographic data collected in Sermilik Fjord, East Greenland, by ship in summer 2008 and from moorings. Our data reveal the presence of subtropical waters throughout the fjord. These waters are continuously replenished through a wind-driven exchange with the shelf, where they are present all year. The temperature and renewal of these waters indicate that they currently cause enhanced submarine melting at the glacier terminus. Key controls on the melting rate are the volume and properties of the subtropical waters on the shelf, and the patterns of along-shore winds, suggesting that the glaciers’ acceleration has been triggered by a combination of atmospheric and oceanic changes. Our measurements provide evidence for a rapid advective pathway for the transmission of oceanic variability to the ice-sheet margins.

Journal ArticleDOI
TL;DR: It is revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development, which provides a foundation for the use ofZebrafish as a model in toxicological, pharmacological and chemical disease research.
Abstract: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.

Journal ArticleDOI
TL;DR: The main theme of the workshop as discussed by the authors was to understand the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record, including the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules.
Abstract: . The present paper is the result of a workshop sponsored by the DFG Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System", the International Graduate College EUROPROX, and the Alfred Wegener Institute for Polar and Marine Research. The workshop brought together specialists on organic matter degradation and on proxy-based environmental reconstruction. The paper deals with the main theme of the workshop, understanding the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record. Special attention is paid to (A) the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules, (B) the impact of selective OM preservation on the interpretation of proxies for marine palaeoceanographic and palaeoclimatic reconstruction, and (C) past marine productivity and selective preservation in sediments. It appears that most of the factors influencing OM preservation have been identified, but many of the mechanisms by which they operate are partly, or even fragmentarily, understood. Some factors have not even been taken carefully into consideration. This incomplete understanding of OM breakdown hampers proper assessment of the present and past carbon cycle as well as the interpretation of OM based proxies and proxies affected by OM breakdown. To arrive at better proxy-based reconstructions "deformation functions" are needed, taking into account the transport and diagenesis-related molecular and atomic modifications following proxy formation. Some emerging proxies for OM degradation may shed light on such deformation functions. The use of palynomorph concentrations and selective changes in assemblage composition as models for production and preservation of OM may correct for bias due to selective degradation. Such quantitative assessment of OM degradation may lead to more accurate reconstruction of past productivity and bottom water oxygenation. Given the cost and effort associated with programs to recover sediment cores for paleoclimatological studies, as well as with generating proxy records, it would seem wise to develop a detailed sedimentological and diagenetic context for interpretation of these records. With respect to the latter, parallel acquisition of data that inform on the fidelity of the proxy signatures and reveal potential diagenetic biases would be of clear value.

Journal ArticleDOI
TL;DR: The field results for the heterogeneous fleet of autonomous underwater gliders that collected data continuously throughout the month-long ASAP field experiment demonstrate an innovative tool for ocean sampling and provide a proof of concept for an important field robotics endeavor that integrates coordinated motion control with adaptive sampling.
Abstract: A full-scale adaptive ocean sampling network was deployed throughout the month-long 2006 Adaptive Sam- pling and Prediction (ASAP) field experiment in Monterey Bay, California. One of the central goals of the field experiment was to test and demonstrate newly developed techniques for coordinated motion control of au- tonomous vehicles carrying environmental sensors to efficiently sample the ocean. We describe the field results for the heterogeneous fleet of autonomous underwater gliders that collected data continuously throughout the month-long experiment. Six of these gliders were coordinated autonomously for 24 days straight using feed- back laws that scale with the number of vehicles. These feedback laws were systematically computed using recently developed methodology to produce desired collective motion patterns, tuned to the spatial and tem- poral scales in the sampled fields for the purpose of reducing statistical uncertainty in field estimates. The implementation was designed to allow for adaptation of coordinated sampling patterns using human-in-the- loop decision making, guided by optimization and prediction tools. The results demonstrate an innovative tool for ocean sampling and provide a proof of concept for an important field robotics endeavor that integrates coordinated motion control with adaptive sampling. C

Journal ArticleDOI
TL;DR: In this paper, modern and historical observations demonstrate that the temperature of the intermediate-depth (150-900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades, and that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer.
Abstract: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.

Journal ArticleDOI
TL;DR: The Cochlodinium species responsible for a severe and widespread HAB in the Arabian Gulf and Gulf of Oman that has lasted for more than eight months at this writing, killing thousands of tons of fish and limiting traditional fishery operations, damaging coral reefs, impacting coastal tourism, and forcing the closure of desalination plants in the region is reported on.

Journal ArticleDOI
TL;DR: Improved realism in simplified tidally averaged physics has been driven by simultaneous advances in the understanding of the detailed dynamics within the tidal cycle and across irregular channel cross-sections.
Abstract: Recent advances in our understanding of estuarine circulation and salinity structure are reviewed. We focus on well- and partially mixed systems that are long relative to the tidal excursion. Dynamics of the coupled system of width- and tidally averaged momentum and salt equations are now better understood owing to the development of simple numerical solution techniques. These have led to a greater appreciation of the key role played by the time dependency of the length of the salt intrusion. Improved realism in simplified tidally averaged physics has been driven by simultaneous advances in our understanding of the detailed dynamics within the tidal cycle and across irregular channel cross-sections. The complex interactions of turbulence, stratification, and advection are now understood well enough to motivate a new generation of physically plausible mixing parameterizations for the tidally averaged equations.

Proceedings ArticleDOI
24 May 2010
TL;DR: In this paper, an optical communication system that complements and integrates with existing acoustic systems was developed for underwater communication systems, resulting in an underwater communications capability offering high data rates and low latency when within optical range combined with long range and robustness of acoustics when outside of optical range.
Abstract: Communication underwater is severely limited when compared to communications in air because water is essentially opaque to electromagnetic radiation except in the visible band. Even in the visible band, light penetrates only a few hundred meters in the clearest waters and much less in waters made turbid by suspended sediment or high concentrations of marine life. Consequently, acoustic techniques have been developed for underwater communication systems and now represent a relatively mature and robust technology. Acoustic systems are capable of long range communication, but offer limited data rates and significant latency (due to the speed of sound in water). We are developing an optical communication system that complements and integrates with existing acoustic systems resulting in an underwater communications capability offering high data rates and low latency when within optical range combined with long range and robustness of acoustics when outside of optical range. Amongst a wide array of applications, this combination of capabilities will make it possible to operate self-powered ROVs from support vessels or platforms without requiring a physical connection to the ROV. Such a capability will help simplify operations and potentially reduce costs through the use of less capable surface vessels. New deployment strategies may offer game-changing opportunities within all areas of undersea activities. For example, rapid event response will be enhanced and repair and maintenance of the emerging ocean observatory infrastructure will become more cost effective. Such through-water communications will likewise enable exchange of large data files from fixed sensors using AUVs (or ROVs) as data mules, shuttling real-time video from untethered vehicles for inspection, identification, and other related operations. Interconnectivity for dense arrays of underwater sensors without the need for expensive and difficult to install undersea cables is also possible. An unmanned battery operated vehicle, dedicated to a subsea node, that can be wirelessly operated though a combination of acoustic and optical communications, will be an important asset for both scientific exploration and commercial applications.

Journal ArticleDOI
TL;DR: In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean as discussed by the authors, and preliminary observations and analyses from these programs highlight that complexity.
Abstract: In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean. Their potential contribution to the climate system motivated major parallel field programs in both the North Pacific [Kuroshio Extension System Study (KESS)] and the North Atlantic [Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE)], and preliminary observations and analyses from these programs highlight that complexity. The Gulf Stream (GS) in the North Atlantic and the Kuroshio Extension (KE) in the North Pacific have broad similarities, as subtropical gyre WBCs, but they also have significant differences, which affect the regional air–sea exchange processes and their larger-scale interactions. The 15-yr satellite altimeter data record, which provides a rich source of information, is combined here with the longer historical record from in situ data to describe and compare the curr...

Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo analysis of a published data set is performed to determine the probability that the imbalance can be explained purely by uncertainties in measurements and conversion factors, and two poorly quantified sources, lateral advection of particles and a population of slowly settling particles are discussed as providing a means of closing regional carbon budgets.
Abstract: Metabolic activity in the water column below the euphotic zone is ultimately fuelled by the vertical flux of organic material from the surface. Over time, the deep ocean is presumably at steady state, with sources and sinks balanced. But recently compiled global budgets and intensive local field studies suggest that estimates of metabolic activity in the dark ocean exceed the influx of organic substrates. This imbalance indicates either the existence of unaccounted sources of organic carbon or that metabolic activity in the dark ocean is being over-estimated. Budgets of organic carbon flux and metabolic activity in the dark ocean have uncertainties associated with environmental variability, measurement capabilities, conversion parameters, and processes that are not well sampled. We present these issues and quantify associated uncertainties where possible, using a Monte Carlo analysis of a published data set to determine the probability that the imbalance can be explained purely by uncertainties in measurements and conversion factors. A sensitivity analysis demonstrates that the bacterial growth efficiencies and assumed cell carbon contents have the greatest effects on the magnitude of the carbon imbalance. Two poorly quantified sources, lateral advection of particles and a population of slowly settling particles, are discussed as providing a means of closing regional carbon budgets. Finally, we make recommendations concerning future research directions to reduce important uncertainties and allow a better determination of the magnitude and causes of the unbalanced carbon budgets.

Journal ArticleDOI
TL;DR: A global climate model with an interactive terrestrial biosphere is used to investigate the effects of adding deciduous trees on bare ground at high northern latitudes and suggests an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.
Abstract: Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

Journal ArticleDOI
01 Jan 2010-Science
TL;DR: Comparison of the deep water source record with overturning strength proxies shows how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-Ocean deglacial climate events.
Abstract: Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.

Journal ArticleDOI
01 Oct 2010-Ecology
TL;DR: The impacts of climate change on polar bears in the southern Beaufort Sea are evaluated by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models.
Abstract: The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment- dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in k in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ks, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ks ' � 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with ''business as usual'' (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.

Journal ArticleDOI
TL;DR: The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines.
Abstract: 1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0.96-0.99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0.73-0.79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings therefore are relevant to the extinction risk facing approximately one-third of the world's polar bears.

Journal ArticleDOI
TL;DR: Yields of N2O are measured from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media and it is demonstrated that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2 O.
Abstract: . Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2−) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2− (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα−δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.