scispace - formally typeset
Search or ask a question

Showing papers by "Woods Hole Oceanographic Institution published in 2013"


Journal ArticleDOI
14 Jul 2013-Nature
TL;DR: This study applies single-cell genomics to target and sequence 201 archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life and provides a systematic step towards a better understanding of biological evolution on the authors' planet.
Abstract: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.

1,856 citations


Journal ArticleDOI
TL;DR: Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer, implying that plastic serves as a novel ecological habitat in the open ocean.
Abstract: Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the “Plastisphere”. Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vib...

1,789 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reveal two broad regimes of phytoplankton nutrient limitation in the modern upper ocean: Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow.
Abstract: Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

1,516 citations


Book ChapterDOI
TL;DR: In this paper, the authors provide a critical review of flow law parameters for olivine aggregates and single crystals deformed in the diffusion creep and dislocation creep regimes under both wet and dry conditions.
Abstract: In this manuscript we review experimental constraints for the viscosity of the upper mantle. We first analyze experimental data to provide a critical review of flow law parameters for olivine aggregates and single crystals deformed in the diffusion creep and dislocation creep regimes under both wet and dry conditions. Using reasonable values for the physical state of the upper mantle, the viscosities predicted by extrapolation of the experimental flow laws compare well with independent estimates for the viscosity of the oceanic mantle, which is approximately 10 19 Pa s at a depth of ∼100 km. The viscosity of the mantle wedge of subduction zones could be even lower if the flux of water through it can result in olivine water contents greater than those estimated for the oceanic asthenosphere and promote the onset of melting. Calculations of the partitioning of water between hydrous melt and mantle peridotite suggest that the water content of the residue of arc melting is similar to that estimated for the asthenosphere. Thus, transport of water from the slab into the mantle wedge can continually replenish the water content of the upper mantle and facilitate the existence of a low viscosity asthenosphere.

1,354 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century.
Abstract: Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO 2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth system models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration pathways (RCPs) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in the 2090s (compared to the 1990s) for sea surface temperature, sea surface pH, global O 2 content and integrated primary productivity amount to p2.73 (±0.72) °C, −0.33 (±0.003) pH unit, −3.45 (±0.44)% and −8.6 (±7.9)%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 (±0.45) °C, −0.07 (±0.001) pH unit, −1.81 (±0.31)% and −2.0 (±4.1)%, respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns and thus do not change coincidentally. Large decreases in O 2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of subsurface O 2 concentrations in the tropics and global and regional changes in net primary productivity. These high uncertainties in projections of primary productivity and subsurface oxygen prompt us to continue inter-model comparisons to understand these model differences, while calling for caution when using the CMIP5 models to force regional impact models.

1,147 citations


Journal ArticleDOI
13 Sep 2013-Science
TL;DR: Using nearly 50 years of coastal survey data on >350 marine taxa, Pinsky et al. found that climate velocity was a much better predictor of patterns of change than individual species' characteristics or life histories.
Abstract: Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity—the rate and direction that climate shifts across the landscape—can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.

964 citations


Journal ArticleDOI
Moinuddin Ahmed1, Kevin J. Anchukaitis2, Kevin J. Anchukaitis3, Asfawossen Asrat4, H. P. Borgaonkar5, Martina Braida6, Brendan M. Buckley2, Ulf Büntgen7, Brian M. Chase8, Brian M. Chase9, Duncan A. Christie10, Duncan A. Christie11, Edward R. Cook2, Mark A. J. Curran12, Mark A. J. Curran13, Henry F. Diaz14, Jan Esper15, Ze-Xin Fan16, Narayan Prasad Gaire17, Quansheng Ge18, Joelle Gergis19, J. Fidel González-Rouco20, Hugues Goosse21, Stefan W. Grab22, Nicholas E. Graham23, Rochelle Graham23, Martin Grosjean24, Sami Hanhijärvi25, Darrell S. Kaufman26, Thorsten Kiefer, Katsuhiko Kimura27, Atte Korhola25, Paul J. Krusic28, Antonio Lara11, Antonio Lara10, Anne-Marie Lézine29, Fredrik Charpentier Ljungqvist28, Andrew Lorrey30, Jürg Luterbacher31, Valérie Masson-Delmotte29, Danny McCarroll32, Joseph R. McConnell33, Nicholas P. McKay26, Mariano S. Morales34, Andrew D. Moy12, Andrew D. Moy13, Robert Mulvaney35, Ignacio A. Mundo34, Takeshi Nakatsuka36, David J. Nash37, David J. Nash22, Raphael Neukom7, Sharon E. Nicholson38, Hans Oerter39, Jonathan G. Palmer40, Jonathan G. Palmer41, Steven J. Phipps40, María Prieto32, Andrés Rivera42, Masaki Sano36, Mirko Severi43, Timothy M. Shanahan44, Xuemei Shao18, Feng Shi, Michael Sigl33, Jason E. Smerdon2, Olga Solomina45, Eric J. Steig46, Barbara Stenni6, Meloth Thamban47, Valerie Trouet48, Chris S. M. Turney40, Mohammed Umer4, Tas van Ommen12, Tas van Ommen13, Dirk Verschuren49, A. E. Viau50, Ricardo Villalba34, Bo Møllesøe Vinther51, Lucien von Gunten, Sebastian Wagner, Eugene R. Wahl14, Heinz Wanner24, Johannes P. Werner31, James W. C. White52, Koh Yasue53, Eduardo Zorita 
Federal Urdu University1, Columbia University2, Woods Hole Oceanographic Institution3, Addis Ababa University4, Indian Institute of Tropical Meteorology5, University of Trieste6, Swiss Federal Institute for Forest, Snow and Landscape Research7, University of Montpellier8, University of Bergen9, University of Chile10, Austral University of Chile11, Australian Antarctic Division12, University of Tasmania13, National Oceanic and Atmospheric Administration14, University of Mainz15, Xishuangbanna Tropical Botanical Garden16, Nepal Academy of Science and Technology17, Chinese Academy of Sciences18, University of Melbourne19, Complutense University of Madrid20, Université catholique de Louvain21, University of the Witwatersrand22, Hydrologic Research Center23, University of Bern24, University of Helsinki25, Northern Arizona University26, Fukushima University27, Stockholm University28, Université Paris-Saclay29, National Institute of Water and Atmospheric Research30, University of Giessen31, Swansea University32, Desert Research Institute33, National Scientific and Technical Research Council34, British Antarctic Survey35, Nagoya University36, University of Brighton37, Florida State University38, Alfred Wegener Institute for Polar and Marine Research39, University of New South Wales40, University of Exeter41, Centro de Estudios Científicos42, University of Florence43, University of Texas at Austin44, Russian Academy of Sciences45, University of Washington46, National Centre for Antarctic and Ocean Research47, University of Arizona48, Ghent University49, University of Ottawa50, University of Copenhagen51, University of Colorado Boulder52, Shinshu University53
TL;DR: The authors reconstructed past temperatures for seven continental-scale regions during the past one to two millennia and found that the most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century.
Abstract: Past global climate changes had strong regional expression To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years

885 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a methodology developed by the global carbon cycle science community to quantify all major components of global carbon budget, including their uncertainties, and provide a baseline to keep track of annual carbon budgets in the future.
Abstract: . Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 p 0.4 PgC yr−1, ELUC 1.0 p 0.5 PgC yr−1, GATM 4.3 p 0.1 PgC yr−1, SOCEAN 2.5 p 0.5 PgC yr−1, and SLAND 2.6 p 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 p 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 p 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 p 0.2 PgC yr−1, SOCEAN was 2.7 p 0.5 PgC yr−1, and SLAND was 4.1 p 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Nina conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 p 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as p1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_V2013 ). Global carbon budget 2013

716 citations


Journal ArticleDOI
TL;DR: In this article, the authors used new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of ice volume for the winters of 2010/11 and 2011/12.
Abstract: [1] Satellite records show a decline in ice extent over more than three decades, with a record minimum in September 2012. Results from the Pan-Arctic Ice-Ocean Modelling and Assimilation system (PIOMAS) suggest that the decline in extent has been accompanied by a decline in volume, but this has not been confirmed by data. Using new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, we generate estimates of ice volume for the winters of 2010/11 and 2011/12. We compare these data with current estimates from PIOMAS and earlier (2003–8) estimates from the National Aeronautics and Space Administration ICESat mission. Between the ICESat and CryoSat-2 periods, the autumn volume declined by 4291 km3 and the winter volume by 1479 km3. This exceeds the decline in ice volume in the central Arctic from the PIOMAS model of 2644 km3 in the autumn, but is less than the 2091 km3 in winter, between the two time periods.

664 citations


Journal ArticleDOI
Chris T. Amemiya1, Chris T. Amemiya2, Jessica Alföldi3, Alison P. Lee4, Shaohua Fan5, Hervé Philippe6, Iain MacCallum3, Ingo Braasch7, Tereza Manousaki5, Igor Schneider8, Nicolas Rohner9, Chris L. Organ10, Domitille Chalopin11, J. Joshua Smith12, Mark Robinson2, Rosemary A. Dorrington13, Marco Gerdol14, Bronwen Aken15, Maria Assunta Biscotti16, Marco Barucca16, Denis Baurain17, Aaron M. Berlin3, Gregory L. Blatch18, Gregory L. Blatch13, Francesco Buonocore, Thorsten Burmester19, Michael S. Campbell10, Adriana Canapa16, John P. Cannon20, Alan Christoffels21, Gianluca De Moro14, Adrienne L. Edkins13, Lin Fan3, Anna Maria Fausto, Nathalie Feiner5, Mariko Forconi16, Junaid Gamieldien21, Sante Gnerre3, Andreas Gnirke3, Jared V. Goldstone22, Wilfried Haerty23, Mark E. Hahn22, Uljana Hesse21, Steve Hoffmann24, Jeremy Johnson3, Sibel I. Karchner22, Shigehiro Kuraku5, Marcia Lara3, Joshua Z. Levin3, Gary W. Litman20, Evan Mauceli3, Evan Mauceli9, Tsutomu Miyake25, M. Gail Mueller26, David R. Nelson27, Anne Nitsche24, Ettore Olmo16, Tatsuya Ota28, Alberto Pallavicini14, Sumir Panji21, Barbara Picone21, Chris P. Ponting23, Sonja J. Prohaska24, Dariusz Przybylski3, Nil Ratan Saha2, Vydianathan Ravi4, Filipe J. Ribeiro3, Tatjana Sauka-Spengler23, Giuseppe Scapigliati, Stephen M. J. Searle15, Ted Sharpe3, Oleg Simakov5, Peter F. Stadler24, John J. Stegeman22, Kenta Sumiyama29, Diana Tabbaa3, Hakim Tafer24, Jason Turner-Maier3, Peter van Heusden21, Simon D. M. White15, Louise Williams3, Mark Yandell10, Henner Brinkmann6, Jean Nicolas Volff11, Clifford J. Tabin9, Neil H. Shubin30, Manfred Schartl31, David B. Jaffe3, John H. Postlethwait7, Byrappa Venkatesh4, Federica Di Palma3, Eric S. Lander3, Axel Meyer5, Kerstin Lindblad-Toh3, Kerstin Lindblad-Toh32 
18 Apr 2013-Nature
TL;DR: Through a phylogenomic analysis, it is concluded that the lungfish, and not the coelacanth, is the closest living relative of tetrapods.
Abstract: The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

601 citations


Journal ArticleDOI
TL;DR: In this article, the Genuine Progress Indicator (GPI) has been used as an economic welfare indicator for 17 countries for which GPI has been estimated over the 1950-2003 time period.

Journal ArticleDOI
TL;DR: Research now indicates that temperature and vegetation seasonality in northern ecosystems have diminished to an extent equivalent to a southerly shift of 4°– 7° in latitude, and may reach the equivalent of up to 20° over the twenty-first century.
Abstract: Pronounced increases in winter temperature result in lower seasonal temperature differences, with implications for vegetation seasonality and productivity. Research now indicates that temperature and vegetation seasonality in northern ecosystems have diminished to an extent equivalent to a southerly shift of 4°– 7° in latitude, and may reach the equivalent of up to 20° over the twenty-first century.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments and obtained direct covariance estimates of momentum fluxes and wind profiles during three of them.
Abstract: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 ...

Book ChapterDOI
19 Mar 2013
TL;DR: In this paper, the authors present a synthesis of upper-ocean submesoscale processes, arising in the presence of lateral buoyancy gradients and describe their generation through fron-togenesis, unforced instabilities, and forced motions due to buoyancy loss or down-front winds.
Abstract: Increased spatial resolution in recent observations and modeling has revealed a richness of structure and processes on lateral scales of a kilometer in the upper ocean. Processes at this scale, termed submesoscale, are distinguished by order one Rossby and Richardson numbers; their dynamics are distinct from those of the largely quasi-geostrophic mesoscale, as well as fully three-dimensional, small-scale, processes. Submesoscale pro- cesses make an important contribution to the vertical flux of mass, buoyancy, and trac- ers in the upper ocean. They flux potential vorticity through the mixed layer, enhance communication between the pycnocline and surface, and play a crucial role in changing the upper-ocean stratification and mixed-layer structure on a time scale of days. In this review, we present a synthesis of upper-ocean submesoscale processes, arising in the presence of lateral buoyancy gradients. We describe their generation through fron- togenesis, unforced instabilities, and forced motions due to buoyancy loss or down-front winds. Using the semi-geostrophic (SG) framework, we present physical arguments to help interpret several key aspects of submesoscale flows. These include the development of narrow elongated regions with O(1) Rossby and Richardson numbers through fron- togenesis, intense vertical velocities with a downward bias at these sites, and secondary circulations that redistribute buoyancy to stratify the mixed layer. We review some of the first parameterizations for submesoscale processes that attempt to capture their con- tribution to, firstly, vertical buoyancy fluxes and restratification by mixed layer insta- bilities and, secondly, the exchange of potential vorticity between the wind- and buoyancy- forced surface, mixed layer, and pycnocline. Submesoscale processes are emerging as vi- tal for the transport of biogeochemical properties, for generating spatial heterogeneity that is critical for biogeochemical processes and mixing, and for the transfer of energy from the meso to small scales. Several studies are in progress to model, measure, ana- lyze, understand, and parameterize these motions.

Journal ArticleDOI
Betsy A. Read1, Jessica Kegel2, Mary J. Klute3, Alan Kuo4, Stephane C. Lefebvre5, Florian Maumus6, Christoph Mayer7, John P. Miller8, Adam Monier9, Asaf Salamov4, Jeremy R. Young10, María Aguilar3, Jean-Michel Claverie11, Stephan Frickenhaus2, Karina Gonzalez12, Emily K. Herman3, Yao-Cheng Lin13, Johnathan A. Napier14, Hiroyuki Ogata11, Analissa F. Sarno1, Jeremy Shmutz4, Declan C. Schroeder, Colomban de Vargas15, Frédéric Verret16, Peter von Dassow17, Klaus Valentin2, Yves Van de Peer13, Glen L. Wheeler18, Joel B. Dacks3, Charles F. Delwiche8, Sonya T. Dyhrman19, Sonya T. Dyhrman2, Sonya T. Dyhrman20, Gernot Glöckner21, Uwe John2, Thomas A. Richards22, Alexandra Z. Worden9, Xiaoyu Zhang1, Igor V. Grigoriev23, Andrew E. Allen24, Kay D. Bidle25, Kay D. Bidle11, Mark Borodovsky11, Chris Bowler15, Colin Brownlee26, Colin Brownlee1, J. Mark Cock12, Marek Eliáš27, Vadim N. Gladyshev28, Marco Groth1, Chittibabu Guda, Ahmad R. Hadaegh29, M. D. Iglesias-Rodriguez30, Jerry Jenkins16, Bethan M. Jones31, Tracy Lawson32, Florian Leese33, Erika Lindquist34, Alexei Lobanov27, Alexandre Lomsadze25, Shehre-Banoo Malik35, Mary E. Marsh36, Luke C. M. Mackinder15, Thomas Mock11, Bernd Mueller-Roeber37, António Pagarete38, Micaela S. Parker39, Ian Probert11, Hadi Quesneville15, Christine A. Raines31, Stefan A. Rensing15, Stefan A. Rensing2, Diego Mauricio Riaño-Pachón40, Sophie Richier41, Sophie Richier40, Sebastian D. Rokitta42, Yoshihiro Shiraiwa43, Darren M. Soanes42, Mark van der Giezen39, Thomas M. Wahlund41, Bryony A. P. Williams44, Willie Wilson43, Gordon Wolfe41, Louie L. Wurch42, Louie L. Wurch40 
11 Jul 2013-Nature
TL;DR: Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires, and reveals a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome.
Abstract: Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of C-ant with numerical ocean circulation models.
Abstract: The global ocean is a significant sink for anthropogenic carbon (C-ant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of C-ant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of C-ant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of C-ant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of C-ant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of C-ant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate C-ant. Our review also highlights the importance of repeat measurements of hydro-graphic and biogeochemical parameters to estimate the storage of C-ant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based C-ant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of C-ant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 +/- 31 PgC (+/- 20% uncertainty). This estimate includes a broad range of values, suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2.

Journal ArticleDOI
TL;DR: In this article, a Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty.
Abstract: The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA ...

Journal ArticleDOI
TL;DR: All available long-term datasets on changes in jellyfish abundance across multiple coastal stations are analyzed, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in Jellyfish abundance.
Abstract: A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.

Book ChapterDOI
TL;DR: A review of the oceanic response to changes in NAO-induced forcing from combined theoretical, numerical experimentation and observational perspectives can be found in this article, where the authors conjecture that on decadal and longer time scales, changes in the ocean's heat storage and transport should have an increasingly important impact on the climate.
Abstract: The North Atlantic Oscillation (NAO) is the dominant mode of atmospheric variability in the North Atlantic Sector. Basin scale changes in the atmospheric forcing significantly affect properties and circulation of the ocean. Part of the response is local and rapid (surface temperature, mixed-layer depth, upper ocean heat content, surface Ekman transport, sea ice cover). However, the geostrophically balanced large-scale horizontal and overturning circulation can take several years to adjust to changes in the forcing. The delayed response is non-local in the sense that waves and the mean circulation communicate perturbations at the air-sea interface to other parts of the Atlantic basin. A delayed and non-local response can potentially give rise to oscillatory behavior if there is significant feedback from the ocean to the atmosphere. We conjecture that, on decadal and longer time scales, changes in the ocean's heat storage and transport should have an increasingly important impact on the climate. Finally, changes in the ocean circulation and distribution of heat and freshwater will also alter ventilation rates and pathways. Thus we expect a change in the net uptake of gases (e.g., O 2 , CO 2 ), altered nutrient balance, and changes in the dispersion of marine life. We review what is known about the oceanic response to changes in NAO-induced forcing from combined theoretical, numerical experimentation and observational perspectives.

Book ChapterDOI
TL;DR: In this article, a compilation of whole rock geochemistry for approximately 1100 lava samples and 200 plutonic rock samples from the Aleutian island arc, including data for the western part of the arc which has recently become available.
Abstract: Based on a compilation of whole rock geochemistry for approximately 1100 lava samples and 200 plutonic rock samples from the Aleutian island arc, we characterize along-strike variation, including data for the western part of the arc which has recently become available. We concentrate on the observation that western Aleutian, high Mg# andesite compositions bracket the composition of the continental crust. Isotope data show that this is not due to recycling of terrigenous sediments. Thus, the western Aleutians can provide insight into genesis of juvenile continental crust. The composition of primitive magmas (molar Mg# > 0.6) varies systematically along the strike of the arc. Concentrations of SiO 2 , Na 2 O and perhaps K 2 O increase from east to west, while MgO, FeO, CaO decrease. Thus, primitive magmas in the central and eastern Aleutians (east of 174°W) are mainly basalts, while those in the western Aleutians are mainly andesites. Along-strike variation in Aleutian magma compositions may be related to a westward decrease in sediment input, and/or to the westward decrease in down-dip subduction velocity. 206 Pb/ 204 Pb, 207 Pb/ 204 Pb, 208 Pb /204 Pb and 87 Sr/ 86 Sr all decrease from east to west, whereas 143 Nd/ 144 Nd increases from east to west. These data, together with analyses of sediment from DSDP Site 183, indicate that the proportion of recycled sediment in Aleutian magmas decreases from east to west. Some proposed trace element signatures of sediment recycling in arc magmas do not vary systematically along the strike of the Aleutians, and do not correlate with radiogenic isotope variations. Thus, for example, Th/Nb and fractionation-corrected K concentration in Aleutian lavas are not related to the flux of subducting sediment. Th/La is strongly correlated with Ba/La, rendering it doubtful that Ba/La is a proxy for an aqueous fluid component derived from subducted basalt. Ce/Pb > 4 is common in Aleutian lavas west of 174°W, in lavas with MORB-like Pb, Sr and Nd isotope ratios, and is also found behind the main arc trend in the central Aleutians. Thus, Ce/Pb in Aleutian lavas with MORB-like isotope ratios is not always low, and may be affected by a component derived from partial melting of subducted basalt in eclogite facies. Enriched, primitive andesites, with high Sr/Y, steep REE patterns, and low Yb and Y, are an important lava type in the Aleutians west of 174°W. High Sr/Y and Dy/Yb, indicative of abundant garnet in the source of melting, are correlated with major element systematics. Lavas with a garnet signature have high SiO 2 , Na 2 O and K 2 O.

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: Evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic.
Abstract: Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.


Journal ArticleDOI
TL;DR: The global integrated sea-air anthropogenic carbon dioxide (CO 2 ) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project.
Abstract: The globally integrated sea–air anthropogenic carbon dioxide (CO 2 ) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO 2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr −1 . The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr −1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr −1 ) decade −1 to −0.50 (Pg C yr −1 ) decade −1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO 2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO 2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.

Journal ArticleDOI
TL;DR: The authors used high-resolution records of sediment color from the Cariaco Basin off the coast of Venezuela and the Arabian Sea to assess teleconnections with the North Atlantic climate system during the last glacial period.
Abstract: The last glacial period was marked by dramatic climate fluctuations. Sediment records from the Cariaco Basin and the Arabian Sea suggest that cooling in the North Atlantic region was tightly coupled with a southward displacement of the intertropical convergence zone and a weakening of the Indian summer monsoon. During the last glacial period, the North Atlantic regionexperienced pronounced, millennial-scale alternations between cold, stadial conditions and milder interstadial conditions—commonly referred to as Dansgaard–Oeschger oscillations—as well as periods of massive iceberg discharge known as Heinrich events1. Changes in Northern Hemisphere temperature, as recorded in Greenland2,3,4, are thought to have affected the location of the Atlantic intertropical convergence zone5,6 and the strength of the Indian summer monsoon7,8. Here we use high-resolution records of sediment colour—a measure of terrigenous versus biogenic content—from the Cariaco Basin off the coast of Venezuela and the Arabian Sea to assess teleconnections with the North Atlantic climate system during the last glacial period. The Cariaco record indicates that the intertropical convergence zone migrated seasonally over the site during mild stadial conditions, but was permanently displaced south of the basin during peak stadials and Heinrich events. In the Arabian Sea, we find evidence of a weak Indian summer monsoon during the stadial events. The tropical records show a more variable response to North Atlantic cooling than the Greenland temperature records. We therefore suggest that Greenland climate is especially sensitive to variations in the North Atlantic system—in particular sea-ice extent—whereas the intertropical convergence zone and Indian monsoon system respond primarily to variations in mean Northern Hemisphere temperature.

Journal ArticleDOI
TL;DR: The evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity-temperature-depth instruments used on Argo floats).
Abstract: The evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity-temperature-depth instruments used on Argo floats). A detailed discussion of the accuracy of these devices and a projection of the future of ocean temperature measurements are provided. The accuracy of ocean temperature measurements is discussed in detail in the context of ocean heat content, Earth's energy imbalance, and thermosteric sea level rise. Up-to-date estimates are provided for these three important quantities. The total energy imbalance at the top of atmosphere is best assessed by taking an inventory of changes in energy storage. The main storage is in the ocean, the latest values of which are presented. Furthermore, despite differences in measurement methods and analysis techniques, multiple studies show that there has been a multidecadal increase in the heat content of both the upper and deep ocean regions, which reflects the impact of anthropogenic warming. With respect to sea level rise, mutually reinforcing information from tide gauges and radar altimetry shows that presently, sea level is rising at approximately 3 mm yr-1 with contributions from both thermal expansion and mass accumulation from ice melt. The latest data for thermal expansion sea level rise are included here and analyzed. Key Points Oceanographic techniques and analysis have improved over many decadesThese improvements allow more accurate Earth-energy balance estimatesUnderstanding of ocean heat content and sea-level rise has also increased ©2013. American Geophysical Union. All Rights Reserved.

Journal ArticleDOI
TL;DR: The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5).
Abstract: The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated.The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (>30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature....

Journal ArticleDOI
TL;DR: In this paper, a comprehensive meta-analysis of organic zooplankton values at the base of the food web, dissolved inorganic carbon δ13C values, and seawater δ18O values to create, for the first time, robust isoscapes for the Atlantic Ocean is presented.
Abstract: Ecogeochemistry—the application of geochemical techniques to fundamental questions in population and community ecology—has been used in animal migration studies in terrestrial environments for several decades; however, the approach has received far less attention in marine systems. This review includes comprehensive meta-analyses of organic zooplankton δ13C and δ15N values at the base of the food web, dissolved inorganic carbon δ13C values, and seawater δ18O values to create, for the first time, robust isoscapes for the Atlantic Ocean. These isoscapes present far greater geographic variability in multiple geochemical tracers than was previously thought, thus forming the foundation for reconstructions of habitat use and migration patterns of marine organisms. We review several additional tracers, including trace-element-to-calcium ratios and heavy element stable isotopes, to examine anadromous migrations. We highlight the value of the ecogeochemistry approach by examining case studies on three components of connectivity: dispersal and natal homing, functional connectivity, and migratory connectivity. We also discuss recent advances in compound-specific stable carbon and nitrogen isotope analyses for tracking animal movement. A better understanding of isotopic routing and fractionation factors, particularly of individual compound classes, is necessary to realize the full potential of ecogeochemistry.

Journal ArticleDOI
17 Jan 2013-Nature
TL;DR: It is shown that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal.
Abstract: The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record--a coastal pluvial from 1680 to 1765--occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales.

Journal ArticleDOI
TL;DR: In this article, the authors presented a multi-model global dataset of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP).
Abstract: . We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies.

Book ChapterDOI
TL;DR: In this article, the authors summarize petrological and seismic constraints on the temperature of arc lower crust and shallow mantle and show that published thermal models are inconsistent with these constraints, and present thermal models incorporating temperature-dependent viscosity.
Abstract: We summarize petrological and seismic constraints on the temperature of arc lower crust and shallow mantle, and show that published thermal models are inconsistent with these constraints. We then present thermal models incorporating temperature-dependent viscosity, using widely accepted values for activation energy and asthenospheric viscosity. These produce thin thermal boundary layers in the wedge corner, and an overall thermal structure that is consistent with other temperature constraints. Some of these models predict partial melting of subducted sediment and/or basalt, even though we did not incorporate the effect of shear heating We obtain these results for subduction of 50 Myr old oceanic crust at 60 km/Myr, and even for subduction of 80 Myr old crust at 80 km/Myr, suggesting that melting of subducted crust may not be not restricted to slow subduction of young oceanic crust.