scispace - formally typeset
Search or ask a question

Showing papers by "Woods Hole Oceanographic Institution published in 2020"


Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations


Journal ArticleDOI
TL;DR: Marine20 as mentioned in this paper is an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radioccarbon from 0 −55 cal kBP and serves as a baseline for regional oceanic variation.
Abstract: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.

690 citations


Journal ArticleDOI
TL;DR: The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA), and progress has been made in understanding the mechanisms that link it to midlatitude weather variability as discussed by the authors.
Abstract: The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather.

423 citations


Journal ArticleDOI
TL;DR: In this article, the authors propose that soil carbon persistence can be understood through the lens of decomposers as a result of functional complexity derived from the interplay between spatial and temporal variation of molecular diversity and composition, which suggests soil management should be based on constant care rather than one-time action to lock away carbon in soils.
Abstract: Soil organic carbon management has the potential to aid climate change mitigation through drawdown of atmospheric carbon dioxide. To be effective, such management must account for processes influencing carbon storage and re-emission at different space and time scales. Achieving this requires a conceptual advance in our understanding to link carbon dynamics from the scales at which processes occur to the scales at which decisions are made. Here, we propose that soil carbon persistence can be understood through the lens of decomposers as a result of functional complexity derived from the interplay between spatial and temporal variation of molecular diversity and composition. For example, co-location alone can determine whether a molecule is decomposed, with rapid changes in moisture leading to transport of organic matter and constraining the fitness of the microbial community, while greater molecular diversity may increase the metabolic demand of, and thus potentially limit, decomposition. This conceptual shift accounts for emergent behaviour of the microbial community and would enable soil carbon changes to be predicted without invoking recalcitrant carbon forms that have not been observed experimentally. Functional complexity as a driver of soil carbon persistence suggests soil management should be based on constant care rather than one-time action to lock away carbon in soils. Dynamic interactions between chemical and biological controls govern the stability of soil organic carbon and drive complex, emergent patterns in soil carbon persistence.

289 citations



Journal ArticleDOI
23 Jan 2020-Nature
TL;DR: This model shows that present-day delta morphology varies across a continuum between wave, tide, and river dominance, but that most large deltas are tide- and river-dominated, which means that recent land gains are unlikely to be sustained throughout the twenty-first century.
Abstract: River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion1–3. However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 ± 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains—25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming4 has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 ± 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise5, however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally. A global study of river deltas shows a net increase in delta area by about 54 km2 yr−1 over the past 30 years, in part due to deforestation-induced sediment delivery increase.

205 citations


Journal ArticleDOI
TL;DR: This work examines the known and potential impacts of ocean pollution on human health, identifies gaps in knowledge, project future trends, and proposes priorities for interventions to control and prevent pollution of the seas and safeguard human health.
Abstract: Background: Pollution – unwanted waste released to air, water, and land by human activity – is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources – coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children’s risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals – phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste – can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South – environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth’s resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.

197 citations


Journal ArticleDOI
24 Jan 2020
TL;DR: In this article, the authors recommend key strategies to address these challenges, including stronger integration of sciences and ocean-observing systems, improved science-policy interfaces, new partnerships supported by a new ocean-climate finance system, and improved ocean literacy and education to modify social norms and behaviors.
Abstract: The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.

164 citations


Journal ArticleDOI
TL;DR: Von Schuckmann et al. as mentioned in this paper presented an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018.
Abstract: . Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m −2 . Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m −2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m −2 , bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/ , last access: 7 August 2020) under the DOI https://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).

141 citations


Journal ArticleDOI
TL;DR: A new compilation of POC fluxes in the upper ocean is used to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez).
Abstract: The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans' interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation's Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the "Martin curve." We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.

120 citations


Journal ArticleDOI
TL;DR: Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses, and tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes.
Abstract: Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Nino-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.

Journal ArticleDOI
09 Mar 2020-Nature
TL;DR: Coral records indicate that the variability of the Indian Ocean Dipole over the last millennium is strongly coupled to variability in the El Niño/Southern Oscillation and that recent extremes are unusual but not unprecedented.
Abstract: The Indian Ocean Dipole (IOD) affects climate and rainfall across the world, and most severely in nations surrounding the Indian Ocean1–4. The frequency and intensity of positive IOD events increased during the twentieth century5 and may continue to intensify in a warming world6. However, confidence in predictions of future IOD change is limited by known biases in IOD models7 and the lack of information on natural IOD variability before anthropogenic climate change. Here we use precisely dated and highly resolved coral records from the eastern equatorial Indian Ocean, where the signature of IOD variability is strong and unambiguous, to produce a semi-continuous reconstruction of IOD variability that covers five centuries of the last millennium. Our reconstruction demonstrates that extreme positive IOD events were rare before 1960. However, the most extreme event on record (1997) is not unprecedented, because at least one event that was approximately 27 to 42 per cent larger occurred naturally during the seventeenth century. We further show that a persistent, tight coupling existed between the variability of the IOD and the El Nino/Southern Oscillation during the last millennium. Indo-Pacific coupling was characterized by weak interannual variability before approximately 1590, which probably altered teleconnection patterns, and by anomalously strong variability during the seventeenth century, which was associated with societal upheaval in tropical Asia. A tendency towards clustering of positive IOD events is evident in our reconstruction, which—together with the identification of extreme IOD variability and persistent tropical Indo-Pacific climate coupling—may have implications for improving seasonal and decadal predictions and managing the climate risks of future IOD variability. Coral records indicate that the variability of the Indian Ocean Dipole over the last millennium is strongly coupled to variability in the El Nino/Southern Oscillation and that recent extremes are unusual but not unprecedented.

Journal ArticleDOI
TL;DR: In this article, a temperature and salinity hydrographic profile climatology is assembled, evaluated for data quality, and analyzed to assess changes of the Bering and Chukchi Sea continental shelves over seasonal to century-long time scales.
Abstract: A temperature and salinity hydrographic profile climatology is assembled, evaluated for data quality, and analyzed to assess changes of the Bering and Chukchi Sea continental shelves over seasonal to century-long time scales. The climatology informs description of the spatial distribution and temporal evolution of water masses over the two shelves, and quantification of changes in the magnitude and throughput of heat and fresh water. For the Chukchi Shelf, linear trend analysis of the integrated shelf heat content over its 1922–2018 period of record finds a significant summer and fall warming of 1.4 °C (0.14 ± 0.07 °C decade−1); over 1990–2018 the warming rate tripled to 0.43 ± 0.35 °C decade−1. In contrast, the Bering Shelf's predominantly decadal-scale variability precludes detection of a water column warming trend over its 1966–2018 period of record, but sea surface temperature data show a significant warming of 0.22 ± 0.10 °C decade−1 over the same time frame. Heat fluxes over 1979–2018 computed by the European Centre for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis exhibit no record-length trend in the shelf-wide Bering surface heat fluxes, but the Chukchi Shelf cooling season (October–March) has a trend toward greater surface heat losses and its warming season (April–September) has a trend toward greater heat gains. The 2014–2018 half-decade exhibited unprecedented low winter and spring sea-ice cover in the Northern Bering and Chukchi seas, changes that coincided with reduced springtime surface albedo, increased spring absorption of solar radiation, and anomalously elevated water column heat content in summer and fall. Consequently, the warm ocean required additional time to cool to the freezing point in fall. Fall and winter ocean-to-atmosphere heat fluxes were anomalously large and associated with enhanced southerly winds and elevated surface air temperatures, which in turn promoted still lower sea-ice production, extent, and concentration anomalies. Likely reductions in sea-ice melt were associated with positive salinity anomalies on the Southeast Bering Shelf and along the continental slope over 2014–2018. Negative salinity anomalies during 2014–2018 on the central and northern Bering Shelf may be related to a combination of 1) long-term declines in salinity, 2) an increase of ice melt, and 3) a decline of brine production. We hypothesize that freshening on the Bering Shelf and in Bering Strait since 2000 are linked to net glacial ablation in the Gulf of Alaska watershed. We show that the heat engines of both the Bering and Chukchi shelves accelerated over 2014–2018, with increased surface heat flux exchanges and increased oceanic heat advection. During this time, the Chukchi Shelf delivered an additional 5–9 x 1019 J yr−1 (50–90 EJ yr−1) into the Arctic basin and/or sea-ice melt, relative to the climatology. A similar amount of excess heat (60 EJ yr−1) was delivered to the atmosphere, showing that the Chukchi Sea makes an out-sized contribution to Arctic amplification. A conceptual model that summarizes the controlling feedback loop for these Pacific Arctic changes relates heat content, sea ice, freshwater distributions, surface heat fluxes, and advective fluxes.

Journal ArticleDOI
TL;DR: Geochemical and geophysical datasets are presented that suggest a hydrothermal system penetrating the upper lithospheric mantle at an ultra-slow spreading mid-oceanic ridge.
Abstract: Coupled magmatic and tectonic activity plays an important role in high-temperature hydrothermal circulation at mid-ocean ridges. The circulation patterns for such systems have been elucidated by microearthquakes and geochemical data over a broad spectrum of spreading rates, but such data have not been generally available for ultra-slow spreading ridges. Here we report new geophysical and fluid geochemical data for high-temperature active hydrothermal venting at Dragon Horn area (49.7°E) on the Southwest Indian Ridge. Twin detachment faults penetrating to the depth of 13 ± 2 km below the seafloor were identified based on the microearthquakes. The geochemical composition of the hydrothermal fluids suggests a long reaction path involving both mafic and ultramafic lithologies. Combined with numerical simulations, our results demonstrate that these hydrothermal fluids could circulate ~ 6 km deeper than the Moho boundary and to much greater depths than those at Trans-Atlantic Geotraverse and Logachev-1 hydrothermal fields on the Mid-Atlantic Ridge. Magmatic and tectonic activity at mid-oceanic ridges can give detailed insights into high-temperature hydrothermal circulation of fluids. The authors here present geochemical and geophysical datasets that suggest a hydrothermal system penetrating the upper lithospheric mantle at an ultra-slow spreading mid-oceanic ridge.

Journal ArticleDOI
Annie P. S. Wong1, Susan Wijffels2, Stephen C. Riser1, Sylvie Pouliquen3, Shigeki Hosoda4, Dean Roemmich5, John Gilson5, Gregory C. Johnson6, Kim I. Martini, David J. Murphy, Megan Scanderbeg5, T. V. S. Udaya Bhaskar7, Justin J. H. Buck8, Frederic Merceur3, Thierry Carval3, Guillaume Maze3, Cécile Cabanes3, Xavier Andre3, Noe Poffa3, Igor Yashayaev9, Paul M. Barker10, Stephanie Guinehut, Mathieu Belbeoch, Mark Ignaszewski, Molly O. Baringer11, Claudia Schmid11, John M. Lyman6, Kristene E. McTaggart6, Sarah G. Purkey5, N. V. Zilberman5, Matthew B. Alkire1, Dana D. Swift1, W. Brechner Owens2, Steven R. Jayne2, Cora Hersh2, Pelle Robbins2, Deb West-Mack2, Frank Bahr2, Sachiko Yoshida2, Philip Sutton12, Romain Cancouët, Christine Coatanoan3, Delphine Dobbler3, Andrea Garcia Juan, Jérôme Gourrion, Nicolas Kolodziejczyk3, Vincent Bernard3, Bernard Bourlès, Hervé Claustre13, Fabrizio D'Ortenzio13, Serge Le Reste3, Pierre Yve Le Traon, Jean Philippe Rannou14, Carole Saout-Grit, Sabrina Speich15, Virginie Thierry3, Nathalie Verbrugge, Ingrid M. Angel-Benavides, Birgit Klein, Giulio Notarstefano16, Pierre-Marie Poulain16, Pedro Vélez-Belchí, Toshio Suga17, Kentaro Ando4, Naoto Iwasaska18, Taiyo Kobayashi4, Shuhei Masuda4, Eitarou Oka19, Kanako Sato4, Tomoaki Nakamura20, Katsunari Sato20, Yasushi Takatsuki20, Takashi Yoshida20, Rebecca Cowley21, Jenny Lovell21, Peter R. Oke21, Esmee M. van Wijk22, Esmee M. van Wijk21, Fiona Carse23, Matthew Donnelly8, W. John Gould24, Katie Gowers8, Brian A. King24, Stephen Loch8, Mary Mowat25, Jon Turton23, E. Pattabhi Rama Rao7, M. Ravichandran, Howard J. Freeland26, Isabelle Gaboury26, Denis Gilbert26, Blair J. W. Greenan9, Mathieu Ouellet26, Tetjana Ross26, Anh Tran26, Mingmei Dong, Zenghong Liu27, Jianping Xu27, Ki Ryong Kang, Hyeong Jun Jo, Sung Dae Kim28, Hyuk Min Park28 
TL;DR: The history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered, is described in this article.
Abstract: In the past two decades, the Argo Program has collected, processed and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.

Journal ArticleDOI
Drahomíra Faktorová1, R. Ellen R. Nisbet2, R. Ellen R. Nisbet3, José A. Fernández Robledo4, Elena Casacuberta5, Lisa Sudek6, Andrew E. Allen7, Manuel Ares8, Cristina Aresté5, Cecilia Balestreri9, Adrian C. Barbrook3, Patrick Beardslee10, Sara J. Bender11, David S. Booth12, François-Yves Bouget13, Chris Bowler14, Susana A. Breglia15, Colin Brownlee9, Gertraud Burger16, Heriberto Cerutti10, Rachele Cesaroni17, Miguel Angel Chiurillo18, Thomas E. Clemente10, Duncan B. Coles4, Jackie L. Collier19, Elizabeth C. Cooney20, Kathryn J. Coyne21, Roberto Docampo18, Christopher L. Dupont7, Virginia P. Edgcomb22, Elin Einarsson3, Pia A. Elustondo15, Fernán Federici23, Verónica Freire-Benéitez24, Nastasia J. Freyria4, Kodai Fukuda25, Paulo A. Garcia26, Peter R. Girguis27, Fatma Gomaa27, Sebastian G. Gornik28, Jian Guo8, Jian Guo6, Vladimír Hampl29, Yutaka Hanawa25, Esteban R. Haro-Contreras15, Elisabeth Hehenberger20, Andrea Highfield9, Yoshihisa Hirakawa25, Amanda Hopes30, Christopher J. Howe3, Ian Hu3, Jorge Ibañez23, Nicholas A.T. Irwin20, Yuu Ishii31, Natalia Ewa Janowicz29, Adam C. Jones11, Ambar Kachale1, Konomi Fujimura-Kamada32, Binnypreet Kaur1, Jonathan Z. Kaye11, Eleanna Kazana24, Patrick J. Keeling20, Nicole King12, Lawrence A. Klobutcher33, Noelia Lander18, Imen Lassadi3, Zhu-Hong Li18, Senjie Lin33, Jean Claude Lozano13, Fulei Luan10, Shinichiro Maruyama31, Tamara Matute23, Cristina Miceli34, Jun Minagawa35, Jun Minagawa36, Mark Moosburner7, Sebastián R. Najle37, Sebastián R. Najle5, Deepak Nanjappa21, Isabel C. Nimmo3, Luke M. Noble38, Luke M. Noble39, Anna M. G. Novák Vanclová29, Mariusz Nowacki17, Isaac Núñez23, Arnab Pain40, Arnab Pain41, Angela Piersanti34, Sandra Pucciarelli34, Jan Pyrih24, Jan Pyrih29, Joshua S. Rest19, Mariana Rius19, Deborah L. Robertson42, Albane Ruaud43, Albane Ruaud23, Iñaki Ruiz-Trillo44, Iñaki Ruiz-Trillo5, Monika Abedin Sigg12, Pamela A. Silver27, Claudio H. Slamovits15, G. Jason Smith45, Brittany N. Sprecher33, Rowena Stern9, Estienne C. Swart43, Estienne C. Swart17, Anastasios D. Tsaousis24, Lev Tsypin46, Lev Tsypin47, Aaron P. Turkewitz47, Jernej Turnšek, Matus Valach16, Valérie Vergé13, Peter von Dassow23, Tobias von der Haar24, Ross F. Waller3, Lu Wang48, Xiaoxue Wen10, Glen L. Wheeler9, April Woods45, Huan Zhang33, Thomas Mock30, Alexandra Z. Worden6, Julius Lukeš1 
TL;DR: The development of genetic tools in a range of protists primarily from marine environments are reported on, providing a roadmap for developing genetically tractable organisms.
Abstract: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.

Journal ArticleDOI
TL;DR: This characterization of Galapagos deep-sea benthic invertebrate megafauna across a range of ecosystems represents a first step to study future changes that may result from anthropogenic impacts to the planet’s climate and oceans, and informed the creation of fully protected deep-water areas in theGalapagos Marine Reserve.
Abstract: The deep sea represents the largest and least explored biome on the planet. Despite the iconic status of the Galapagos Islands and being considered one of the most pristine locations on earth, the deep-sea benthic ecosystems of the archipelago are virtually unexplored in comparison to their shallow-water counterparts. In 2015, we embarked on a multi-disciplinary scientific expedition to conduct the first systematic characterization of deep-sea benthic invertebrate communities of the Galapagos, across a range of habitats. We explored seven sites to depths of over 3,300 m using a two-part Remotely Operated Vehicle (ROV) system aboard the E/V Nautilus, and collected 90 biological specimens that were preserved and sent to experts around the world for analysis. Of those, 30 taxa were determined to be undescribed and new to science, including members of five new genera (2 sponges and 3 cnidarians). We also systematically analysed image frame grabs from over 85 h of ROV footage to investigate patterns of species diversity and document the presence of a range of underwater communities between depths of 290 and 3,373 m, including cold-water coral communities, extensive glass sponge and octocoral gardens, and soft-sediment faunal communities. This characterization of Galapagos deep-sea benthic invertebrate megafauna across a range of ecosystems represents a first step to study future changes that may result from anthropogenic impacts to the planet’s climate and oceans, and informed the creation of fully protected deep-water areas in the Galapagos Marine Reserve that may help preserve these unique communities in our changing planet.

Journal ArticleDOI
TL;DR: In this paper, the authors examined three main forest-based strategies used in the land sector, which can be grouped into four main strategies: protection; proforestation, reforestation and restoration; reform of guidelines, accounting rules and default values.
Abstract: Given the short time-frame to limit global warming, and the current emissions gap, it is critical to prioritise mitigation actions. To date, scant attention has been paid to the mitigation benefits of primary forest protection. We estimated tropical forest ecosystem carbon stocks and flows. The ecosystem carbon stock of primary tropical forests is estimated at 141–159 Pg C (billion tonnes of carbon) which is some 49–53% of all tropical forest carbon, the living biomass component of which alone is 91–103% of the remaining carbon budget to limit global warming to below 1.5 degrees above pre-industrial levels. Furthermore, tropical forests have ongoing sequestration rates 0.47–1.3 Pg C yr−1, equivalent to 8–13% of annual global anthropogenic CO2 (carbon dioxide) emissions. We examined three main forest-based strategies used in the land sector—halting deforestation, increasing forest restoration and improving the sustainable management of production forests. The mitigation benefits of primary forest protection are contingent upon how degradation is defined and accounted for, while those from restoration also depend on how restoration is understood and applied. Through proforestation, reduced carbon stocks in secondary forests can regrow to their natural carbon carrying capacity or primary forest state. We evaluated published data from studies comparing logged and unlogged forests. On average, primary forests store around 35% more carbon. While comparisons are confounded by a range of factors, reported biomass carbon recovery rates were from 40 to 100+ years. There is a substantive portfolio of forest-based mitigation actions and interventions available to policy and decision-makers, depending on national circumstances, in addition to SFM and plantation focused approaches, that can be grouped into four main strategies: protection; proforestation, reforestation and restoration; reform of guidelines, accounting rules and default values; landscape conservation planning. Given the emissions gap, mitigation strategies that merely reduce the rate of emissions against historic or projected reference levels are insufficient. Mitigation strategies are needed that explicitly avoid emissions where possible as well as enabling ongoing sequestration.

Journal ArticleDOI
TL;DR: An overview of the current state of understanding of the processes that cause regional sea-level change is provided and areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are identified.
Abstract: Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

Posted ContentDOI
TL;DR: In this article, the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory, and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018.
Abstract: . Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. This Earth Energy Imbalance (EEI) is a fundamental metric of climate change. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system – is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory, and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the past 58 years, with a total heat gain of 393 p 40 ZJ, which is equivalent to a heating rate of 0.42 p 0.04 W m−2. The majority of the heat gain (89 %) takes place in the global ocean (0–700 m: 53 %; 700–2000 m: 28 %; > 2000 m: 8 %), while it amounts to 6 % for the land heat gain, to 4 % available for the melting of grounded and floating ice, and to 1 % for atmospheric warming. These new estimates indicate a larger contribution of land and ice heat gain (10 % in total) compared to previous estimates (7 %). There is a regime shift of the Earth heat inventory over the past 2 decades, which appears to be predominantly driven by heat sequestration into the deeper layers of the global ocean, and a doubling of heat gain in the atmosphere. However, a major challenge is to reduce uncertainties in the Earth heat inventory, which can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, as well as to establish an international framework for concerted multi-disciplinary research of the Earth heat inventory. Earth heat inventory is published at DKRZ ( https://www.dkrz.de/ ) under the doi: https://doi.org/10.26050/WDCC/GCOS_EHI_EXP (von Schuckmann et al., 2020).

Journal ArticleDOI
TL;DR: Results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions.
Abstract: Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes. Some palaeotemperature proxies suffer from inaccuracies related to kinetic fractionations occurring during carbonate mineral growth. Here, the authors show that dual clumped isotope thermometry can identify the origin of these kinetic biases and allows for the reconstruction of accurate environmental temperatures.

Journal ArticleDOI
TL;DR: In this paper, the authors report µ182W values (the deviation of a sample from that of laboratory standards, in parts per million) and corresponding 3He/4He ratios for rocks from 15 different hotspots.

Journal ArticleDOI
Matthew A. Charette1, Lauren Kipp2, Lauren Kipp3, Laramie T. Jensen4, Jessica S. Dabrowski1, Laura M. Whitmore5, Jessica N. Fitzsimmons4, Tatiana Williford4, Adam Ulfsbo6, Elizabeth M. Jones, Randelle M. Bundy1, Randelle M. Bundy7, Sebastian M. Vivancos2, Katharina Pahnke8, Seth G. John9, Yang Xiang10, Mariko Hatta11, Mariia V. Petrova12, Lars Eric Heimburger-Boavida12, Dorothea Bauch13, Robert Newton2, Angelica Pasqualini2, Alison M. Agather14, Rainer M. W. Amon4, Robert F. Anderson2, Per Andersson15, Ronald Benner16, Katlin L. Bowman10, R. Lawrence Edwards17, Sandra Gdaniec18, Sandra Gdaniec15, Sandra Gdaniec19, Loes J. A. Gerringa, Aridane G. González20, Aridane G. González21, Mats A. Granskog22, Brian A. Haley23, Chad R. Hammerschmidt14, Dennis A. Hansell24, Paul B. Henderson1, David Kadko25, Karl Kaiser4, Patrick Laan, Phoebe J. Lam10, Carl H. Lamborg10, Martin Levier19, Xianglei Li17, Andrew R. Margolin26, Andrew R. Margolin24, Christopher I. Measures11, Rob Middag, Frank J. Millero24, Willard S. Moore16, Ronja Paffrath8, Hélène Planquette21, Benjamin Rabe27, Heather E. Reader28, Heather E. Reader29, Robert Rember30, Micha J. A. Rijkenberg, Matthieu Roy-Barman19, Michiel M Rutgers van der Loeff27, Mak A. Saito1, Ursula Schauer27, Peter Schlosser31, Peter Schlosser2, Robert M. Sherrell32, Alan M. Shiller5, Hans A. Slagter33, Jeroen E. Sonke34, Colin A. Stedmon29, Ryan J. Woosley24, Ryan J. Woosley35, Ole Valk27, Jan van Ooijen, Ruifeng Zhang36, Ruifeng Zhang9 
TL;DR: In this article, a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs) was carried out by the GEOTRACES program.
Abstract: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25�50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s�1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.

Journal ArticleDOI
02 Apr 2020-Nature
TL;DR: Exploitation and degradation of the mysterious layer between the sunlit ocean surface and the abyss jeopardize fish stocks and the climate.
Abstract: Exploitation and degradation of the mysterious layer between the sunlit ocean surface and the abyss jeopardize fish stocks and the climate. Exploitation and degradation of the mysterious layer between the sunlit ocean surface and the abyss jeopardize fish stocks and the climate.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the vast literature on Southern Ocean top predators, focusing on the most recent syntheses and provided an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes, recognizing the overarching impact that environmental changes driven by climate change have on the ecology of these species.
Abstract: The massive number of seabirds (penguins and procellariiformes) and marine mammals (cetaceans and pinnipeds) - referred to here as top predators - is one of the most iconic components of the Antarctic and Southern Ocean. They play an important role as highly mobile consumers, structuring and connecting pelagic marine food webs and are widely studied relative to other taxa. Many birds and mammals establish dense breeding colonies or use haul-out sites, making them relatively easy to study. Cetaceans, however, spend their lives at sea and thus aspects of their life cycle are more complicated to monitor and study. Nevertheless, they all feed at sea and their reproductive success depends on the food availability in the marine environment, hence they are considered useful indicators of the state of the marine resources. In general, top predators have large body sizes that allow for instrumentation with miniature data-recording or transmitting devices to monitor their activities at sea. Development of scientific techniques to study reproduction and foraging of top predators has led to substantial scientific literature on their population trends, key biological parameters, migratory patterns, foraging and feeding ecology, and linkages with atmospheric or oceanographic dynamics, for a number of species and regions. We briefly summarize the vast literature on Southern Ocean top predators, focusing on the most recent syntheses. We also provide an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes. We recognize the overarching impact that environmental changes driven by climate change have on the ecology of these species. We also evaluate direct and indirect interactions between marine predators and other factors such as disease, pollution, land disturbance and the increasing pressure from global fisheries in the Southern Ocean. Where possible we consider the data availability for assessing the status and trends for each of these components, their capacity for resilience or recovery, effectiveness of management responses, risk likelihood of key impacts and future outlook.

Journal ArticleDOI
03 Jun 2020
TL;DR: In this paper, the authors used a large ensemble size that allows the predictable component of the atmospheric variability to emerge from the background chaotic component, which represents a forced response to oceanic low-frequency variability that strongly resembles the Atlantic Multi-decadal Variability (AMV), correctly reproduced in the decadal hindcasts thanks to realistic ocean initialization and ocean dynamics.
Abstract: Can multi-annual variations in the frequency of North Atlantic atmospheric blocking and mid-latitude circulation regimes be skilfully predicted? Recent advances in seasonal forecasting have shown that mid-latitude climate variability does exhibit significant predictability. However, atmospheric predictability has generally been found to be quite limited on multi-annual timescales. New decadal prediction experiments from NCAR are found to exhibit remarkable skill in reproducing the observed multi-annual variations of wintertime blocking frequency over the North Atlantic and of the North Atlantic Oscillation (NAO) itself. This is partly due to the large ensemble size that allows the predictable component of the atmospheric variability to emerge from the background chaotic component. The predictable atmospheric anomalies represent a forced response to oceanic low-frequency variability that strongly resembles the Atlantic Multi-decadal Variability (AMV), correctly reproduced in the decadal hindcasts thanks to realistic ocean initialization and ocean dynamics. The occurrence of blocking in certain areas of the Euro-Atlantic domain determines the concurrent circulation regime and the phase of known teleconnections, such as the NAO, consequently affecting the stormtrack and the frequency and intensity of extreme weather events. Therefore, skilfully predicting the decadal fluctuations of blocking frequency and the NAO may be used in statistical predictions of near-term climate anomalies, and it provides a strong indication that impactful climate anomalies may also be predictable with improved dynamical models.

Journal ArticleDOI
TL;DR: This work provides a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements.
Abstract: Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.

Journal ArticleDOI
TL;DR: This review assesses harmful algal bloom modeling in the context of climate change, examining modeling methodologies that are currently being used, approaches for representing climate processes, and time scales of HAB model projections.

Journal ArticleDOI
TL;DR: Palaeoclimate data has been used to provide insights into the Indian Ocean Dipole (IOD) and its impact on the global climate as mentioned in this paper, showing that the IOD can harbour even stronger variability than what has been observed to date, and that the increasing frequency of positive IOD events will move outside of the range of natural variability in the last millennium if projected trends continue.

Journal ArticleDOI
TL;DR: The historical underpinnings of the current state of knowledge about AHR signal transduction are provided, a few areas of needed research are identified, and concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation are developed.
Abstract: The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.