scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: In this article, a multi-year sediment trap was deployed in the Weddell Sea, where the annual particle flux measured was the smallest yet observed in the world ocean, and showed extreme variability.
Abstract: In the Weddell Sea, primary production varies seasonally as a result of the solar cycle and the large-scale oscillation of the ice edge across much of its area. The annual ice transgression is the largest of any region on Earth1 and has a profound influence on the production and transportation of particulate matter. In order to clarify the flux, origin and mode of vertical transport of oceanic particles in the pelagic Weddell Sea, we deployed a multi-year sediment trap. The annual particle flux measured was the smallest yet observed in the world ocean, and showed extreme variability. Phytoplankton production is at least partly seeded by diatoms released from the melting of sea ice which had formed in the coastal area of the Antarctic continent. Phytoplankton production under the winter pack ice appears to be minimal.

251 citations

Journal ArticleDOI
TL;DR: Results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source, which implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems.
Abstract: Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

251 citations

Journal ArticleDOI
TL;DR: Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
Abstract: Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.

251 citations

Journal ArticleDOI
TL;DR: The composition of Earth's lower continental crust is enigmatic and the available heat-flow and wavespeed constraints can be satisfied if lower continental continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2.
Abstract: The composition of much of Earth’s lower continental crust is enigmatic. Wavespeeds require that 10–20% of the lower third is mafic, but the available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2. Thus, contrary to common belief, the lower crust in many regions could be relatively felsic, with SiO2 contents similar to andesites and dacites. Most lower crust is less dense than the underlying mantle, but mafic lowermost crust could be unstable and likely delaminates beneath rifts and arcs. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogites and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and be relaminated to the base of the crust. As a result of this refining and differentiation process, such relatively felsic rocks could form much of Earth’s lower crust.

251 citations

Journal ArticleDOI
TL;DR: In this article, the authors present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which they compare with analyses of 30 (mostly chondritic) meteorites.

251 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612