scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
10 Jul 2003-Nature
TL;DR: It is demonstrated that deep convection can occur in this region when the North Atlantic Oscillation Index is high, which is consistent with observations and differs significantly from those known to operate in the Labrador and Mediterranean seas.
Abstract: Open-ocean deep convection, one of the processes by which deep waters of the world's oceans are formed, is restricted to a small number of locations (for example, the Mediterranean and Labrador seas). Recently, the southwest Irminger Sea has been suggested as an additional location for open-ocean deep convection. The deep water formed in the Irminger Sea has the characteristic temperature and salinity of the water mass that fills the mid-depth North Atlantic Ocean, which had been believed to be formed entirely in the Labrador basin. Here we show that the most likely cause of the convection in the Irminger Sea is a low-level atmospheric jet known as the Greenland tip jet, which forms periodically in the lee of Cape Farewell, Greenland, and is associated with elevated heat flux and strong wind stress curl. Using a history of tip-jet events derived from meteorological land station data and a regional oceanic numerical model, we demonstrate that deep convection can occur in this region when the North Atlantic Oscillation Index is high, which is consistent with observations. This mechanism of convection in the Irminger Sea differs significantly from those known to operate in the Labrador and Mediterranean seas.

246 citations

Journal ArticleDOI
TL;DR: This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the A. tamarense complex and explore the origins of new populations.
Abstract: Alexandrium catenella (Whedon et Kof.) Balech, A. tamarense (M. Lebour) Balech, and A. fundyense Balech comprise the A. tamarense complex, dinoflagellates responsible for paralytic shellfish poisoning worldwide. The relationships among these morphologically defined species are poorly understood, as are the reasons for increases in range and bloom occurrence observed over several decades. This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the complex and explore the origins of new populations. The morphospecies are examined under the criteria of phylogenetic, biological, and morphological species concepts and do not to satisfy the requirements of any definition. It is recommended that use of the morphospecies appellations within this complex be discontinued as they imply erroneous relationships among morphological variants. Instead, five groups (probably cryptic species) are identified within the complex that are supported on the basis of large genetic distances, 100% bootstrap values, toxicity, and mating compatibility. Every isolate of three of the groups that has been tested is nontoxic, whereas every isolate of the remaining two groups is toxic. These phylogenetic groups were previously identified within the A. tamarense complex and given geographic designations that reflected the origins of known isolates. For at least two groups, the geographically based names are not indicative of the range occupied by members of each group. Therefore, we recommend a simple group-numbering scheme for use until the taxonomy of this group is reevaluated and new species are proposed.

246 citations

Journal ArticleDOI
TL;DR: Rhenium (Re) is one of a suite of elements (including uranium and molybdenum) that display conservative behavior in seawater and are enriched in anoxic sediments as discussed by the authors.

245 citations

Journal ArticleDOI
TL;DR: A new chemolithotrophic nitrite-oxidizing bacterium, for which the name Nitrospira marina is proposed, was isolated from the Gulf of Maine.
Abstract: A new chemolithotrophic nitrite-oxidizing bacterium, for which the name Nitrospira marina is proposed, was isolated from the Gulf of Maine N marina is a Gramnegative curved rod which may form spirals with 1 to 12 turns Cells have a unique periplasmic space and lack intracytoplasmic membranes and carboxysomes N marina is an obligate chemolithotroph, but best growth is obtained in a mixotrophic medium N marina may be one of the most prevalent nitrite-oxidizing bacteria in some oceanic environments Type strain is field with American Type Culture Collection (ATCC 43039)

245 citations

Journal ArticleDOI
TL;DR: In this paper, a double diffusive mechanism was proposed to explain the observed constancy of Rρ in the main thermocline, based on the evidence from theory, experiment and observation that the intensity of salt-finger convection is a strong function of the Rρ.
Abstract: Ingham (1966) reported that the temperature-salinity relationships in the Central Waters were much better described by a curve of constant density ratio (Rρ = αΔT/βΔS) than by a straight line. His result is quantitatively verified and a simple, but powerful, double-diffusive mechanism is proposed to explain the observed constancy of Rρ in the main thermocline. The mechanism is based on the evidence from theory, experiment and observation that the intensity of salt-finger convection is a strong function of Rρ. This dependence, plus the fact that more salt than heat is transferred by the fingers, causes any deviation from a constant Rρ to be the site of convergence or divergence of the vertical salt flux that acts to remove the perturbation in Rρ. A linear treatment of the mechanism shows that Rρ can be “diffused” with an effective diffusivity that is much greater than the diffusivities of heat or mass. A few numerical examples illustrate the predicted effects of salt fingering on the T-S relation,...

245 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612