scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
01 Oct 2010-Ecology
TL;DR: The impacts of climate change on polar bears in the southern Beaufort Sea are evaluated by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models.
Abstract: The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment- dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in k in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ks, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ks ' � 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with ''business as usual'' (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.

236 citations

Journal ArticleDOI
08 Sep 2005-Nature
TL;DR: It is inferred that the structure of young oceanic plates is instead controlled by a decrease in water content above a depth of 60 km induced by the melting process beneath the spreading centre.
Abstract: Magnetotelluric and seismic data, collected during the MELT experiment at the southern East Pacific Rise, constrain the distribution of melt beneath this mid-ocean-ridge spreading centre and also the evolution of the oceanic lithosphere during its early cooling history. Here we focus on structures imaged at distances approximately 100 to 350 km east of the ridge crest, corresponding to seafloor ages of approximately 1.3 to 4.5 million years (Myr), where the seismic and electrical conductivity structure is nearly constant and independent of age. Beginning at a depth of about 60 km, we image a large increase in electrical conductivity and a change from isotropic to transversely anisotropic electrical structure, with higher conductivity in the direction of fast propagation for seismic waves. Conductive cooling models predict structure that increases in depth with age, extending to about 30 km at 4.5 Myr ago. We infer, however, that the structure of young oceanic plates is instead controlled by a decrease in water content above a depth of 60 km induced by the melting process beneath the spreading centre.

235 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used data obtained along various segments of the mid-Ocean Ridge (MOR) to construct an idealized model for crustal accretion, which aims to predict the topographic, volcanic, tectonic, and hydrothermal characteristics of any given spreading segment of the MOR as a function of distance away from the bounding transform faults.

235 citations

Journal ArticleDOI
01 Feb 2002
TL;DR: In this article, the authors presented a comprehensive description of the mean inflow distribution in the passages connecting the Atlantic Ocean with the Caribbean Sea, and compared the results from two simulations, including a purely wind-forced model driven by Hellerman and Rosenstein (J. Phys. Oceanogr. 13 (1983) 1093) monthly winds, and a model with an additional 14 Sv meridional overturning cell driven by inflow/outflow ports at the northern ð651N) and southern ð201S) model boundaries.
Abstract: New observations are summarized that lead to the first comprehensive description of the mean inflow distribution in the passages connecting the Atlantic Ocean with the Caribbean Sea. The total Caribbean inflow of 28 Sv is shown to be partitioned approximately equally between the Windward Islands Passages (B10 Sv), Leeward Islands Passages ðB 8S vÞ; and the Greater Antilles Passages ðB10 SvÞ: These results are compared to a numerical model study using a 6-layer, 1=41 resolution Atlantic Basin version of the NRL Layered Ocean Model. Results from two simulations are described, including a purely wind-forced model driven by Hellerman and Rosenstein (J. Phys. Oceanogr. 13 (1983) 1093) monthly winds, and a model with an additional 14 Sv meridional overturning cell driven by inflow/outflow ports at the northern ð651N) and southern ð201S) model boundaries. The purely wind-driven version of the model exhibits a total Caribbean inflow of 17 Sv; consistent with expectations from steady, non-topographic Sverdrup theory. Nearly all of the wind-driven inflow occurs north of Martinique at latitude B151N. The net transport through the Lesser Antilles passages south of 151N (Grenada, St. Vincent, and St. Lucia passages) is nearly zero when the model is forced by winds alone. The addition of a 14 Sv meridional cell in the model increases the net Caribbean inflow to 28 Sv; with nearly all of the additional 11 Sv of inflow entering through the southern Lesser Antilles passages. The modeled inflow distribution resulting from the combined wind and overturning forced experiment is found to compare favorably with the observations. The seasonal cycle of the total inflow in the combined forcing experiment has a mixed annual/semiannual character with maximum in spring and summer and minimum in fall, with a total range of about 4 Sv: The seasonal cycle of the Florida Current resulting from this inflow variation is in good qualitative agreement with observations. Most of the seasonal inflow variation occurs through the Windward Islands passages in the far southern Caribbean, whose annual cycle slightly leads that of the Florida and Yucatan Currents. Variability of the modeled inflow on shorter time scales shows a dramatic change in character moving northward along the Antilles arc. The southern passages exhibit large fluctuations on 30–80 day time scales, which decay to very small amplitudes north of Dominica. Much of this variability is caused by North Brazil Current Rings that propagate northwestward from the equatorial Atlantic and interact with the abrupt island arc topography. The total range of transport variability in individual passages predicted by the model is consistent with observations. However, observations are presently too limited to confirm the seasonal cycles or variability spectra in the Caribbean passages. r 2002 Elsevier Science Ltd. All rights reserved.

235 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the shoaling of internal solitary waves of depression in a two-layer system on a uniform slope and found that 15 (± 5) % of the energy lost from first-mode wave motion inshore of the break point goes into vertical mixing.
Abstract: Laboratory experiments have been conducted to study the shoaling of internal solitary waves of depression in a two-layer system on a uniform slope. The shoaling of a single solitary wave results in wave breaking and the production of multiple turbulent surges, or boluses, which propagate up the slope. Significant vertical mixing occurs everywhere inshore of the breaking location. The kinematics of the breaking and bolus runup are described and a breaking criterion is found. The energetics of the breaking are investigated. Over the range of parameters examined, 15 (±5) % of the energy lost from first-mode wave motion inshore of the break point goes into vertical mixing.

235 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612