scispace - formally typeset
Search or ask a question
Institution

Woods Hole Oceanographic Institution

NonprofitFalmouth, Massachusetts, United States
About: Woods Hole Oceanographic Institution is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Population & Mantle (geology). The organization has 5685 authors who have published 18396 publications receiving 1202050 citations. The organization is also known as: WHOI.


Papers
More filters
Journal ArticleDOI
01 Oct 1988-Nature
TL;DR: In this paper, the first hydrothermal fluid samples collected along the slow-spreading Mid-Atlantic Ridge (MAR) are remarkably similar in composition and temperature to fluids collected on the East Pacific Rise (EPR), and they appear to be in equilibrium with a greenschist-facies mineral assemblage.
Abstract: The first hydrothermal fluid samples collected along the slow-spreading Mid-Atlantic Ridge (MAR) are remarkably similar in composition and temperature to fluids collected along the shallower, faster-spreading East Pacific Rise (EPR). The MAR fluids, like those from the EPR, appear to be in equilibrium with a greenschist-facies mineral assemblage. In contrast to the EPR, the more fractured nature of the MAR apparently allows fluids at one of the MAR sites to interact with weathered basalt.

416 citations

Journal ArticleDOI
TL;DR: The most important sources of atmospheric moisture at the global scale are identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions as discussed by the authors.
Abstract: [1] The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Nino–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.

415 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores to show that seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary.
Abstract: Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of approximate to 20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from approximate to 23.6 to approximate to 21.5 Ma. The terminal age of seafloor spreading is approximate to 15 Ma in the East Subbasin and approximate to 16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from approximate to 20 to approximate to 80 km/Myr, but mostly decreased with time except for the period between approximate to 26.0 Ma and the ridge jump (approximate to 23.6 Ma), within which the rate was the fastest at approximate to 70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.

415 citations

Journal ArticleDOI
TL;DR: Improved size and carbon estimates were made and it was found that the estimated contribution of phytoplankton carbon to total particulate organic carbon, integrated over the upper 200 m, averaged 33% (range 21–43%) with no pronounced seasonal pattern.
Abstract: Phytoplankton populations were analyzed using flow cytometry in monthly samples at the Bermuda Atlantic Time-series Study (BATS) station in the Sargasso Sea from 1989–1994 for picoplankton ( Synechococcus and Prochlorococcus ) and from 1992–1994 for eukaryotic phytoplankton in order to better understand the mechanisms that dictate seasonal and inter-annual patterns in the phytoplankton community. The eukaryotic phytoplankton were dominated by populations of small nanoplankton (mostly 2–4 μm diameter), though populations of coccolithophores and sometimes pennate diatoms also could be distinguished. Flow cytometric measurements of population abundances, individual cell light scattering (which can be related to cell size), and chlorophyll fluorescence were made. Synechococcus and the eukaryotic phytoplankton reached their greatest concentrations during the spring bloom each year when the water column was deeply mixed and nutrients were detectable in surface waters. The maximum cell concentration for Prochlorococcus was in the summer and fall of each year, with a deeper sub-surface maximum than Synechococcus . Picoplankton chlorophyll fluorescence and estimated cell size were greater at depth than near the surface, and were lowest in midsummer for both Synechococcus and Prochlorococcus . In the summer and fall, Prochlorococcus cells were often smallest at mid-depth, even when fluorescence per cell and cell concentration were lower at the surface. For the eukaryotes (including coccolithophores), cell concentrations were high during the spring in both 1992 and 1993, and in fall 1992. At these times, mean cell size and fluorescence were low. Improved size and carbon estimates were made and it was found that the estimated contribution of phytoplankton carbon to total particulate organic carbon, integrated over the upper 200 m, averaged 33% (range 21–43%) with no pronounced seasonal pattern.

414 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the primary mechanism responsible for increased land carbon storage under radiatively forced climate change is fertiliza- tion of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil oranic matter under a warming climate, which results in a negative gain for the climate-carbon feedback.
Abstract: Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertil- ization, and increased carbon uptake associated with warm- ing of the climate system. The balance of these two oppos- ing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage un- der radiatively forced climate change is shown to be fertiliza- tion of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil or- ganic matter under a warming climate, which in this partic- ular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink frac- tion. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming

414 citations


Authors

Showing all 5752 results

NameH-indexPapersCitations
Roberto Romero1511516108321
Jerry M. Melillo13438368894
Timothy J. Mitchison13340466418
Xiaoou Tang13255394555
Jillian F. Banfield12756260687
Matthew Jones125116196909
Rodolfo R. Llinás12038652828
Ronald D. Vale11734249020
Scott C. Doney11140659218
Alan G. Marshall107106046904
Peter K. Smith10785549174
Donald E. Canfield10529843270
Edward F. DeLong10226242794
Eric A. Davidson10128145511
Gary G. Borisy10124838195
Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

97% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

IFREMER
12.3K papers, 468.8K citations

91% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022126
2021712
2020701
2019737
2018612