scispace - formally typeset
Search or ask a question
Institution

Worcester Polytechnic Institute

EducationWorcester, Massachusetts, United States
About: Worcester Polytechnic Institute is a education organization based out in Worcester, Massachusetts, United States. It is known for research contribution in the topics: Population & Data envelopment analysis. The organization has 6270 authors who have published 12704 publications receiving 332081 citations. The organization is also known as: WPI.


Papers
More filters
Posted Content
TL;DR: The ZombieLoad attack is presented which uncovers a novel Meltdown-type effect in the processor's fill-buffer logic and shows that faulting load instructions may transiently dereference unauthorized destinations previously brought into the fill buffer by the current or a sibling logical CPU.
Abstract: In early 2018, Meltdown first showed how to read arbitrary kernel memory from user space by exploiting side-effects from transient instructions. While this attack has been mitigated through stronger isolation boundaries between user and kernel space, Meltdown inspired an entirely new class of fault-driven transient execution attacks. Particularly, over the past year, Meltdown-type attacks have been extended to not only leak data from the L1 cache but also from various other microarchitectural structures, including the FPU register file and store buffer. In this paper, we present the ZombieLoad attack which uncovers a novel Meltdown-type effect in the processor's previously unexplored fill-buffer logic. Our analysis shows that faulting load instructions (i.e., loads that have to be re-issued for either architectural or microarchitectural reasons) may transiently dereference unauthorized destinations previously brought into the fill buffer by the current or a sibling logical CPU. Hence, we report data leakage of recently loaded stale values across logical cores. We demonstrate ZombieLoad's effectiveness in a multitude of practical attack scenarios across CPU privilege rings, OS processes, virtual machines, and SGX enclaves. We discuss both short and long-term mitigation approaches and arrive at the conclusion that disabling hyperthreading is the only possible workaround to prevent this extremely powerful attack on current processors.

120 citations

Journal ArticleDOI
TL;DR: In this article, the H 2 permeance of composite palladium-porous stainless steel (Pd-PSS) membranes was determined by assuming Sieverts' law (n ǫ = 0.5) and performing a non-linear fit in order to obtain the hydrogen permeance and the n -value.

120 citations

Journal ArticleDOI
TL;DR: In this article, a modified weighted shifted Grunwald-Letnikov (WSGL) formula was proposed to solve multi-term fractional ordinary and partial differential equations, and the linear stability and second-order convergence for both smooth and non-smooth solutions when the regularity of the solutions is known.

119 citations

Journal ArticleDOI
TL;DR: A comprehensive framework for green supply chain practices in the mining industry is introduced and a multiple criteria evaluation of green supply programs using a novel multiple criteria approach that integrates rough set theory elements and fuzzy TOPSIS is introduced.

119 citations


Authors

Showing all 6336 results

NameH-indexPapersCitations
Andrew G. Clark140823123333
Ming Li103166962672
Joseph Sarkis10148245116
Arthur C. Graesser9561438549
Kevin J. Harrington8568233625
Kui Ren8350132490
Bart Preneel8284425572
Ming-Hui Chen8252529184
Yuguang Fang7957220715
Wenjing Lou7731129405
Bernard Lown7333020320
Joe Zhu7223119017
Y.S. Lin7130416100
Kevin Talbot7126815669
Christof Paar6939921790
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202326
202295
2021762
2020836
2019761
2018703