scispace - formally typeset
Search or ask a question
Institution

Worcester Polytechnic Institute

EducationWorcester, Massachusetts, United States
About: Worcester Polytechnic Institute is a education organization based out in Worcester, Massachusetts, United States. It is known for research contribution in the topics: Population & Data envelopment analysis. The organization has 6270 authors who have published 12704 publications receiving 332081 citations. The organization is also known as: WPI.


Papers
More filters
Journal ArticleDOI
TL;DR: The directional dependence of transport properties as measured from healthy cancellous bone when considered as a biologic, porous medium is defined to demonstrate the anisotropic and heterogeneous nature of the tissue and encourage the ongoing quantification of parameters within the established poroelastic models.

112 citations

Journal ArticleDOI
11 Feb 2016
TL;DR: The achieved weight reduction makes hand exoskeletons more suitable to the intended user, which will permit the study of their effectiveness in providing long duration, high intensity, and targeted rehabilitation as well as functional assistance.
Abstract: Enabling individuals who are living with reduced mobility of the hand to utilize portable exoskeletons at home has the potential to deliver rehabilitation therapies with a greater intensity and relevance to activities of daily living. Various hand exoskeleton designs have been explored in the past, however, devices have remained nonportable and cumbersome for the intended users. Here we investigate a remote actuation system for wearable hand exoskeletons, which moves weight from the weakened limb to the shoulders, reducing the burden on the user and improving portability. A push-pull Bowden cable was used to transmit actuator forces from a backpack to the hand with strict attention paid to total system weight, size, and the needs of the target population. We present the design and integration of this system into a previously presented hand exoskeleton, as well as its characterization. Integration of remote actuation reduced the exoskeleton weight by 56% to 113g without adverse effects to functionality. Total actuation system weight was kept to 754g. The loss of positional accuracy inherent with Bowden cable transmissions was compensated for through closed loop positional control of the transmission output. The achieved weight reduction makes hand exoskeletons more suitable to the intended user, which will permit the study of their effectiveness in providing long duration, high intensity, and targeted rehabilitation as well as functional assistance.

112 citations

Journal ArticleDOI
TL;DR: The authors conducted a controlled experimental study comparing the efficacy of carefully designed inquiry instruction and equally carefully designed direct instruction in realistic science classroom situations at the middle school grades in the US, and reported on the nature of the instructional units in each mode, research design, methods, classroom implementations, monitoring, assessments, analysis and projec...
Abstract: There are continuing educational and political debates about ‘inquiry’ versus ‘direct’ teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K‐12 education. While inquiry‐based instruction has the advantage of modelling aspects of the nature of real scientific inquiry, there is little unconfounded comparative research into the effectiveness and efficiency of the two instructional modes for developing science conceptual understanding. This research undertook a controlled experimental study comparing the efficacy of carefully designed inquiry instruction and equally carefully designed direct instruction in realistic science classroom situations at the middle school grades. The research design addressed common threats to validity. We report on the nature of the instructional units in each mode, research design, methods, classroom implementations, monitoring, assessments, analysis and projec...

112 citations

Proceedings ArticleDOI
14 Mar 2010
TL;DR: This paper proposes a lightweight scheme for secure sensor association and key management in BAN called GDP, which supports batch deployment of sensor nodes to save setup time, does not rely on any additional hardware devices, and is mostly based on symmetric key cryptography, while allowing batch node addition and revocation.
Abstract: Body Area Networks (BAN) is a key enabling technology in E-healthcare such as remote health monitoring. An important security issue during bootstrap phase of the BAN is to securely associate a group of sensor nodes to a patient, and generate necessary secret keys to protect the subsequent wireless communications. Due to the the ad hoc nature of the BAN and the extreme resource constraints of sensor devices, providing secure, fast, efficient and user-friendly secure sensor association is a challenging task. In this paper, we propose a lightweight scheme for secure sensor association and key management in BAN. A group of sensor nodes, having no prior shared secrets before they meet, establish initial trust through \textit{group device pairing} (GDP), which is an authenticated group key agreement protocol where the legitimacy of each member node can be visually verified by a human. Various kinds of secret keys can be generated on demand after deployment. The GDP supports batch deployment of sensor nodes to save setup time, does not rely on any additional hardware devices, and is mostly based on symmetric key cryptography, while allowing batch node addition and revocation. We implemented GDP on a sensor network testbed and evaluated its performance. Experimental results show that that GDP indeed achieves the expected design goals.

112 citations

Journal ArticleDOI
TL;DR: The potential for investigating the oxygen dynamics in genetically engineered mouse models of retinal disease, including diabetic retinopathy, glaucoma, and age-related macular degeneration, is advanced.
Abstract: A newly developed microscope-based imaging system was used to measure the oxygen tension (PO2) inside the retinal and choroidal vessels of mice and to generate in vivo maps of retinal PO2. These maps were generated from the phosphorescence lifetimes of an injected palladium–porphyrin compound using a frequency-domain measurement. The system was fully calibrated and used to produce retinal PO2 maps at different inspiratory oxygen fractions. PO2 rose accordingly and predictably as inspiratory O2 was stepped from hypoxic to hyperoxic conditions. Important experimental and acquisition parameters necessary for applying phosphorescence lifetime imaging to the mouse eye were investigated, including camera exposure and intensifier gain settings. Because of a need to limit light exposure to the retina, PO2 map quality as measured by the coefficient of determination was investigated as a function of signal-to-noise and accumulated excitation energy deposition. With the development of this technology for use in mice, the potential for investigating the oxygen dynamics in genetically engineered mouse models of retinal disease, including diabetic retinopathy, glaucoma, and age-related macular degeneration, is advanced. © 2003 Biomedical Engineering Society. PAC2003: 4266Ew, 8763Lk, 8719Dd

112 citations


Authors

Showing all 6336 results

NameH-indexPapersCitations
Andrew G. Clark140823123333
Ming Li103166962672
Joseph Sarkis10148245116
Arthur C. Graesser9561438549
Kevin J. Harrington8568233625
Kui Ren8350132490
Bart Preneel8284425572
Ming-Hui Chen8252529184
Yuguang Fang7957220715
Wenjing Lou7731129405
Bernard Lown7333020320
Joe Zhu7223119017
Y.S. Lin7130416100
Kevin Talbot7126815669
Christof Paar6939921790
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202326
202295
2021762
2020836
2019761
2018703