scispace - formally typeset
Search or ask a question
Institution

Worcester Polytechnic Institute

EducationWorcester, Massachusetts, United States
About: Worcester Polytechnic Institute is a education organization based out in Worcester, Massachusetts, United States. It is known for research contribution in the topics: Population & Data envelopment analysis. The organization has 6270 authors who have published 12704 publications receiving 332081 citations. The organization is also known as: WPI.


Papers
More filters
Journal ArticleDOI
TL;DR: The experiments suggest that brain ADC measurement could be useful in animal studies and, potentially, in humans to assess the effects of pharmacologic intervention on brain temperature.
Abstract: To identify the temperature dependent change of the apparent diffusion coefficient (ADC) of water in brain tissue, the ADC values of normal rat brain were measured over a range of body temperatures...

93 citations

Journal ArticleDOI
30 Jun 2014
TL;DR: This paper scientifically explains how the human visual system works and how eye tracker technologies can record what the authors register with their eyes, and explains how web design can benefit from the data that eye tracking studies deliver.
Abstract: User experience research aims to understand a user’s point of view. Because eye tracking allows us to literally see through a user’s eyes, it can serve as a valuable tool in web studies, particularly in web design and development. To understand how eye tracking can be pivotal in website studies, this paper scientifically explains how the human visual system works and how eye tracker technologies can record what we register with our eyes. It then explains how web design can benefit from the data that eye tracking studies deliver. Finally, the paper discusses trends for eye tracking in future web experience research.

93 citations

Journal ArticleDOI
18 Jul 2006-Langmuir
TL;DR: The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.
Abstract: The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of synthetic fuels on gas-phase and particulate emissions were investigated in CFM-56 engines on a DC-8 aircraft, and the results showed that the mixture of pure JP-8 fuel and pure synthetic fuels achieved significant reduction in particle number and volume emissions.
Abstract: . The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January–February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer–Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg−1 for JP-8 to 1.2 mg kg−1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg−1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30–44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (−4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to −8 × 1014 particles (kg fuel)−1 °C−1 for particle number emissions and −10 mm3 (kg fuel)−1 °C−1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

93 citations

Journal ArticleDOI
TL;DR: The calculated permeabilities of H in these novel binary alloys obtained from both diffusivity and solubility predictions were found to have a maximum at approximately 20% Ag and approximately 12% Au, which agree well with experimental predictions.
Abstract: The present work investigates both the diffusivity and permeability of hydrogen (H) in palladium-silver (PdAg) and palladium-gold (PdAu) alloys over a 400–1200K temperature range for Pd100−XMX, M=Ag or Au and X=0%–48% using density functional theory (DFT) and kinetic Monte Carlo simulations (KMC). DFT has been employed to obtain octahedral (O)-, tetrahedral (T)-, and transition state (TS)- site energetics as a function of local alloy composition for several PdAg and PdAu alloys with compositions in supercells of X=14.18%, 25.93%, 37.07%, and 48.15% with the nearest (NNs) and next nearest neighbors (NNNs) varied over the entire range of compositions. The estimates were then used to obtain a model relating the O, T, and TS energies of a given site with NNX, NNNX, and the lattice constant. The first passage approach combined with KMC simulations was used for the H diffusion coefficient predictions. It was found that the diffusion coefficient of H in PdAg alloy decreases with increasing Ag and increases with increasing temperature, matching closely with the experimental results reported in the literature. The calculated permeabilities of H in these novel binary alloys obtained from both diffusivity and solubility predictions were found to have a maximum at ∼20% Ag and ∼12% Au, which agree well with experimental predictions. Specifically, the permeability of H in PdAg alloy with ∼20% Ag at 456K is three to four times that of pure Pd, while the PdAu alloy at 12% Au is four to five times that of pure Pd at 456K.

93 citations


Authors

Showing all 6336 results

NameH-indexPapersCitations
Andrew G. Clark140823123333
Ming Li103166962672
Joseph Sarkis10148245116
Arthur C. Graesser9561438549
Kevin J. Harrington8568233625
Kui Ren8350132490
Bart Preneel8284425572
Ming-Hui Chen8252529184
Yuguang Fang7957220715
Wenjing Lou7731129405
Bernard Lown7333020320
Joe Zhu7223119017
Y.S. Lin7130416100
Kevin Talbot7126815669
Christof Paar6939921790
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202326
202295
2021762
2020836
2019761
2018703