scispace - formally typeset
Search or ask a question
Institution

Wright-Patterson Air Force Base

OtherWright-Patterson AFB, Ohio, United States
About: Wright-Patterson Air Force Base is a other organization based out in Wright-Patterson AFB, Ohio, United States. It is known for research contribution in the topics: Laser & Microstructure. The organization has 5817 authors who have published 9157 publications receiving 292559 citations. The organization is also known as: Wright-Patterson AFB & FFO.


Papers
More filters
Book ChapterDOI
TL;DR: In this paper, a bio-organic FET or BioFET was demonstrated using a thin film of DNA-CTMA based biopolymer as the gate insulator and pentacene as the organic semiconductor, in which the current was modulated over three orders of magnitude using gate voltages less than 10 V.
Abstract: Biomolecular DNA, as a marine waste product from salmon processing, has been exploited as biodegradable polymeric material for photonics and electronics. For preparing high optical quality thin films of DNA, a method using DNA with cationic surfactants such as DNA–cetyltrimethylammonium, CTMA has been applied. This process enhances solubility and processing for thin film fabrication. These DNA–CTMA complexes resulted in the formation of self-assembled supramolecular films. Additionally, the molecular weight can be tailored to suit the application through sonication. It revealed that DNA–CTMA complexes were thermostable up to 230∘ C. UV–VIS absorption shows that these thin films have high transparency from 350 to about 1,700 nm. Due to its nature of large band gap and large dielectric constant, thin films of DNA–CTMA has been successfully used in multiple applications such as organic light emitting diodes (OLED), a cladding and host material in nonlinear optical devices, and organic field-effect transistors (OFET). Using this DNA based biopolymers as a gate dielectric layer, OFET devices were fabricated that exhibits current–voltage characteristics with low voltages as compared with using other polymer-based dielectrics. Using a thin film of DNA–CTMA based biopolymer as the gate insulator and pentacene as the organic semiconductor, we have demonstrated a bio-organic FET or BioFET in which the current was modulated over three orders of magnitude using gate voltages less than 10 V. Given the possibility to functionalise the DNA film customised for specific purposes viz. biosensing, DNA–CTMA with its unique structural, optical and electronic properties results in many applications that are extremely interesting.

81 citations

Journal ArticleDOI
TL;DR: In this paper, the defect structure of monoclinic zirconia was investigated by measuring the oxygen partial pressure dependence of the electrical conductivity and sample weight, and the positive holes arising from the ionized ZIRconium vacancies were found to have an extremely small mobility.
Abstract: The defect structure of monoclinic zirconia was investigated by measuring the oxygen partial pressure dependence of the electrical conductivity and sample weight. Techniques were developed to calculate the degree of nonstoichiometry and the mobility of the charge carriers from electrical and weight change data. ZRO2 was found to be an amphoteric semiconductor at 1000°C with the transition from n-type to p-type conductivity occurring at 10–16 atm. The predominant defect in the oxygen excess region was shown to be completely ionized zirconium vacancies. The positive holes arising from the zirconium vacancies were found to have an extremely small mobility.

81 citations

Journal ArticleDOI
TL;DR: In this article, the fatigue response of pre-cracked 2024-T3 Alclad aluminum panels repaired with bonded boron/epoxy composite reinforcements was investigated, and the effects of various disbond locations and sizes were compared to each other as well as to panels with a completely bonded reinforcement and to cracked panels without any reinforcement.

81 citations

Journal ArticleDOI
TL;DR: This work shows that extending the selection with higher stringency conditions leads to lower amounts eluted by the target but higher copy numbers of a sequence with enhanced binding, and serves as proof-of-principle work toward development of point of care diagnostics for medical, combat, or bioterrorism targets.
Abstract: The first-known aptamer for the stress biomarker cortisol was selected using a tunable stringency magnetic bead selection strategy. The capture DNA probe immobilized on the beads was systematically lengthened to increase the number of bases bound to the complementary pool primer regions following selection enrichment. This resulted in a single sequence (15–1) dominating the final round 15 pool, where the same sequence was the second-highest copy number candidate in the enriched pool with the shorter capture DNA probe (round 13). A thorough analysis of the next-generation sequencing results showed that a high copy number may only correlate with enhanced affinity under certain stringency and enrichment conditions, in contrast with prior published reports. Aptamer 15–1 demonstrated enhanced binding to cortisol (K d = 6.9 ± 2.8 μM by equilibrium dialysis; 16.1 ± 0.6 μM by microscale thermophoresis) when compared with the top sequence from round 13 and the negative control progesterone. Whereas most aptamer selections terminate at the selection round demonstrating the highest enrichment, this work shows that extending the selection with higher stringency conditions leads to lower amounts eluted by the target but higher copy numbers of a sequence with enhanced binding. The structure-switching aptamer was applied to a gold nanoparticle assay in buffer and was shown to discriminate between cortisol and two other stress biomarkers, norepinephrine and epinephrine, and a structurally analogous biomarker of liver dysfunction, cholic acid. We believe this approach enhances aptamer selection and serves as proof-of-principle work toward development of point-of-care diagnostics for medical, combat, or bioterrorism targets.

81 citations

Journal ArticleDOI
TL;DR: In this article, Molybdenum disulfide coatings were grown under selected mid-frequency bi-polar pulsed direct current power conditions to control the basal plane orientation relative to the substrate, from parallel (002) to perpendicular (100).

81 citations


Authors

Showing all 5825 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Liming Dai14178182937
Mark C. Hersam10765946813
Gareth H. McKinley9746734624
Robert E. Cohen9141232494
Michael F. Rubner8730129369
Howard E. Katz8747527991
Melvin E. Andersen8351726856
Eric A. Stach8156542589
Harry L. Anderson8039622221
Christopher K. Ober8063129517
Vladimir V. Tsukruk7948128151
David C. Look7852628666
Richard A. Vaia7632425387
Kirk S. Schanze7351219118
Network Information
Related Institutions (5)
Technion – Israel Institute of Technology
79.3K papers, 2.6M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Virginia Tech
95.2K papers, 2.9M citations

86% related

University of Cincinnati
72.5K papers, 2.6M citations

85% related

University of Tennessee
87K papers, 2.8M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202211
2021279
2020298
2019290
2018272