scispace - formally typeset
Search or ask a question
Institution

Wright-Patterson Air Force Base

OtherWright-Patterson AFB, Ohio, United States
About: Wright-Patterson Air Force Base is a other organization based out in Wright-Patterson AFB, Ohio, United States. It is known for research contribution in the topics: Laser & Microstructure. The organization has 5817 authors who have published 9157 publications receiving 292559 citations. The organization is also known as: Wright-Patterson AFB & FFO.


Papers
More filters
Journal ArticleDOI
TL;DR: Histological endometrial dating does not reflect circulating P concentrations and cannot serve as a reliable bioassay of the quality of luteal function, and assessment of selected functional markers by either immunohistochemistry or qRT-PCR is similarly insensitive to decreased circulating P.
Abstract: Context: It is generally assumed that delayed endometrial development observed in luteal phase deficiency (LPD) is the result of abnormally low progesterone (P) levels. This hypothesis has never been tested by direct experiment. Objective: Our objective was to evaluate the effects of P concentrations on human endometrium. Design and Setting: A randomized trial was conducted at an academic medical center. Subjects: Twenty-nine healthy, ovulatory 18- to 35-yr-old women participated. Intervention: Endometrial samples were obtained from women in natural cycles and two groups of experimentally modeled cycles. Women undergoing modeled cycles were treated with GnRH agonist and a fixed physiological dose of transdermal estradiol, followed by randomization to 10 or 40 mg daily im P administration to achieve either normal circulating luteal P or 4-fold lower P concentrations, the latter representing an experimental model of LPD. Main Outcome Measures: Tissue specimens, obtained after 10 days of P exposure, were analyzed by histological dating, immunohistochemistry, immunoblot, and real-time quantitative RT-PCR (qRT-PCR). Results: Histological dating of endometrium, immunohistochemistry for endometrial integrins, and qRT-PCR analysis for nine putative functional markers showed no differences between the three groups. Preliminary data from Western analysis suggest that some proteins may be affected by low serum P concentrations. Conclusions: Histological endometrial dating does not reflect circulating P concentrations and cannot serve as a reliable bioassay of the quality of luteal function. Assessment of selected functional markers by either immunohistochemistry or qRT-PCR is similarly insensitive to decreased circulating P. Preliminary evidence suggests that abnormally low luteal phase serum P concentrations may have important functional consequences not otherwise detected.

75 citations

Journal ArticleDOI
TL;DR: Barriers for the formation of carbon dimer induced defects are calculated and found to be considerably lower than those for the Stone-Wales defect.
Abstract: The adsorption of carbon dimers on carbon nanotubes leads to a rich spectrum of structures and electronic structure modifications. Barriers for the formation of carbon dimer induced defects are calculated and found to be considerably lower than those for the Stone-Wales defect. The electronic states introduced by the ad-dimers depend on defect structure and tube type and size. Multiple carbon ad-dimers provide a route to structural engineering of patterned tubes that may be of interest for nanoelectronics.

75 citations

Proceedings ArticleDOI
07 Apr 1997
TL;DR: An implicit time-accurate approach to aeroelastic simulation was developed with particular attention paid to the issues of time accuracy, structural coupling, grid-deformation strategy, and geometric conservation as mentioned in this paper.
Abstract: An implicit time-accurate approach to aeroelastic simulation was developed with particular attention paid to the issues of time accuracy, structural coupling, grid-deformation strategy, and geometric conservation. A Beam ‐Warming, approximate-factored algorithm, modie ed to include Newton-like subiterations was coupled with a structural model, also in subiteration form. With a sufe cient number of subiterations, this approach becomes a fully implicit, e rst- or second-order-accurate aeroelastic solver. The solver was used to compute time-accurate solutions of an elastically mounted cylinder. The fully implicit coupling allowed the overall scheme to become second-order accurate in time, signie cantly reducing the workload for a given accuracy. A new algebraic grid deformation strategy was developed that preserves grid orthogonality near the surface under large deformations. Finally, the oscillatory behavior of an elastically mounted cylinder was reproduced accurately by the present approach, and results compared favorably to previous experiments and simulations.

75 citations

Journal ArticleDOI
TL;DR: In this paper, the identification of the Auger transitions from clean Si surfaces is made, and it is found that some may involve multiple ionization, which may be due to oxidation or combination with carbon in SiC.

75 citations

Journal ArticleDOI
01 Apr 2020
TL;DR: In this article, a 3D printing approach that can volumetrically deposit multiple functional materials within arbitrary 3D layouts to create electronic devices in a single step is presented, which can be used for tactile sensing, internal wave mapping and shape self-sensing.
Abstract: Three-dimensional (3D) printing can create complex geometries that could be of use in the development of electronics. However, the approach is mainly limited to non-functional structural materials, and the 3D printing of electronic devices typically requires multiple process stages of embedding, spraying and writing. Here, we report a 3D printing approach that can volumetrically deposit multiple functional materials within arbitrary 3D layouts to create electronic devices in a single step. Our approach prints 3D structures with a programmable mosaic of distinct surface charge regions, creating a platform to deposit functional materials into complex architectures based on localized electrostatic attraction. The technique allows selective volumetric depositions of single metals and also diverse active material combinations, including ceramic, semiconducting, magnetic and colloidal materials, into site-specific 3D topologies. To illustrate the capabilities of our approach, we use it to fabricate devices with 3D electronic interfaces that can be used for tactile sensing, internal wave mapping and shape self-sensing. A 3D printing technique that produces structures with programmable patterns of charged surface, allowing different functional materials to be deposited in pre-defined regions, can be used to create electronic devices with a single printing step.

75 citations


Authors

Showing all 5825 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Liming Dai14178182937
Mark C. Hersam10765946813
Gareth H. McKinley9746734624
Robert E. Cohen9141232494
Michael F. Rubner8730129369
Howard E. Katz8747527991
Melvin E. Andersen8351726856
Eric A. Stach8156542589
Harry L. Anderson8039622221
Christopher K. Ober8063129517
Vladimir V. Tsukruk7948128151
David C. Look7852628666
Richard A. Vaia7632425387
Kirk S. Schanze7351219118
Network Information
Related Institutions (5)
Technion – Israel Institute of Technology
79.3K papers, 2.6M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Virginia Tech
95.2K papers, 2.9M citations

86% related

University of Cincinnati
72.5K papers, 2.6M citations

85% related

University of Tennessee
87K papers, 2.8M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202211
2021279
2020298
2019290
2018272