scispace - formally typeset
Search or ask a question
Institution

Wrocław University of Technology

EducationWrocław, Poland
About: Wrocław University of Technology is a education organization based out in Wrocław, Poland. It is known for research contribution in the topics: Laser & Fuzzy logic. The organization has 13115 authors who have published 31279 publications receiving 338694 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors characterize homogeneous translation invariant symmetric non-local operators with positive maximum principle whose harmonic functions satisfy Harnack's inequality and estimate the corresponding semigroup and the potential kernel.
Abstract: We characterize those homogeneous translation invariant symmetric non-local operators with positive maximum principle whose harmonic functions satisfy Harnack’s inequality. We also estimate the corresponding semigroup and the potential kernel.

80 citations

Posted Content
TL;DR: A method that greatly reduces the computational burden induced by the introduction of independent regimes and performs a simulation study to test its efficiency is proposed.
Abstract: In this paper we discuss the calibration of models built on mean-reverting processes combined with Markov regime-switching (MRS). We propose a method that greatly reduces the computational burden induced by the introduction of independent regimes and perform a simulation study to test its efficiency. Our method allows for a 100 to over 1000 times faster calibration than in case of a competing approach utilizing probabilities of the last 10 observations. It is also more general and admits any value of gamma in the base regime dynamics. Since the motivation for this research comes from a recent stream of literature in energy economics, we apply the new method to sample series of electricity spot prices from the German EEX and Australian NSW markets. The proposed MRS models fit these datasets well and replicate the major stylized facts of electricity spot price dynamics.

80 citations

Journal ArticleDOI
TL;DR: The ability of a wide variety of soil-borne fungal strains to degrade four structurally different com pounds containing PC bonds, namely the naturally occurring amino acid ciliatine, the popular herbicide glyphosate, phosphonoacetic acid and 2-amino-3-phosphonopropionic acid was studied to show that soil fungi may play an important role in the biodegradation of organophosphonates.
Abstract: The ability of a wide variety of soil-borne fungal strains to degrade four structurally different com pounds containing PC bonds, namely the naturally occurring amino acid ciliatine, the popular herbicide glyphosate, phosphonoacetic acid and 2-amino-3-phosphonopropionic acid, was studied in order to show that soil fungi may play an important role in the biodegradation of organophosphonates Most of the strains appeared to utilize ciliatine as the sole source of phosphorus for growth Only a limited number of strains were able to grow on the other phosphonates used in this work The strains of Trichoderma harzianum, Scopulariopsis sp and Aspergillus niger chosen for more detailed study show the ability to degrade ciliatine, glyphosate and also amino(3-methoxyphenyl)mehtylphosphonic acid effectively

79 citations

Journal ArticleDOI
15 Apr 2013-Talanta
TL;DR: It was found that the presence of both heavy surfactants results in a significant increase in the net intensity of analytical lines of metals and a notable reduction of the intensity of bands of diatomic molecules and the background.

79 citations

Journal ArticleDOI
TL;DR: Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructureural examinations.
Abstract: The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived stem cells (ASCs) cultured under conditions of static magnetic field. Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. In order to investigate the effects of magnetic field on stem cell signaling, the localization and density and content of microvesicles (MVs) as well as morphology, ultrastructure, and proliferation rate of equine ASCs were evaluated. Results showed that potential of equine adipose-derived mesenchymal stem cells was accelerated when magnetic field was applied. Resazurin-based assay indicated that the cells cultured in the magnetic field reached the population doubling time earlier and colony-forming potential of equine ASCs was higher when cells were cultured under magnetic field conditions. Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructural examinations. Exposition to MF resulted in a considerable increase in the number of secreted MVs—we have clearly observed the differences between the numbers of MVs shed from the cells cultured under MF in comparison to the control culture and were rich in growth factors. Microvesicles derived from ASCs cultured in the MF condition might be utilized in the stem cell-based treatment of equine musculoskeletal disorders and tendon injuries.

79 citations


Authors

Showing all 13239 results

NameH-indexPapersCitations
Krzysztof Palczewski11463146909
Claude B. Sirlin9847533456
Marek Czosnyka8874729117
Alfred Forchel85135834771
Jerzy Leszczynski7899327231
Kim R. Dunbar7447020262
Massimo Olivucci6729214880
Nitesh V. Chawla6138841365
Edward R. T. Tiekink60196721052
Bobby G. Sumpter6061923583
Wieslaw Krolikowski5950412836
Pappannan Thiyagarajan5924510650
Marek Samoc5840111171
Lutz Mädler5823227800
Rafał Weron5828512058
Network Information
Related Institutions (5)
Polish Academy of Sciences
102.1K papers, 2M citations

90% related

University of Warsaw
56.6K papers, 1.1M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

Polytechnic University of Catalonia
45.3K papers, 949.3K citations

89% related

University of Stuttgart
56.3K papers, 1.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202372
2022231
20211,579
20201,769
20191,753
20181,963