scispace - formally typeset
Search or ask a question
Institution

Wrocław University of Technology

EducationWrocław, Poland
About: Wrocław University of Technology is a education organization based out in Wrocław, Poland. It is known for research contribution in the topics: Laser & Fuzzy logic. The organization has 13115 authors who have published 31279 publications receiving 338694 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy.
Abstract: Caspases are proteases at the heart of networks that govern apoptosis and inflammation. The past decade has seen huge leaps in understanding the biology and chemistry of the caspases, largely through the development of synthetic substrates and inhibitors. Such agents are used to define the role of caspases in transmitting life and death signals, in imaging caspases in situ and in vivo, and in deconvoluting the networks that govern cell behavior. Additionally, focused proteomics methods have begun to reveal the natural substrates of caspases in the thousands. Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy.

155 citations

Journal ArticleDOI
TL;DR: It is anticipated that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Abstract: Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations In addition, a brief introduction to a newly created repository Web site (http://frequencymaporg) for vibrational spectroscopic maps is presented We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future

155 citations

Journal ArticleDOI
TL;DR: Using purified recombinant catalytic domains of 6 of the 7 human SENPs, it is revealed that the SUMO domain enhances catalysis of SENP1, -2, -5, -6, and -7, demonstrating substrate-induced activation of SENPs by SUMOs.

154 citations

Journal ArticleDOI
TL;DR: In this paper, an erbium-doped fiber laser with atomic multilayer graphene was used to operate at several harmonics (from 2nd to 21st) of the fundamental repetition frequency of the ring resonator.
Abstract: Passive harmonic-mode locking of erbium-doped fiber laser with atomic multilayer graphene is presented. The laser could operate at several harmonics (from 2nd to 21st) of the fundamental repetition frequency of the ring resonator (106 MHz). The highest achieved repetition rate was 2.22 GHz (which corresponds to the 21st harmonic) with sub-picosecond pulse durations and over 40 dB of the supermode noise suppression. The saturable absorber was formed by multilayer graphene, mechanically exfoliated from pure graphite block through Scotch-tape and deposited on the fiber ferrule.

154 citations

Journal ArticleDOI
TL;DR: The investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms.
Abstract: In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the output of machine learning algorithms for regression problems does not satisfy normality requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple 1×N and N ×N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms.

154 citations


Authors

Showing all 13239 results

NameH-indexPapersCitations
Krzysztof Palczewski11463146909
Claude B. Sirlin9847533456
Marek Czosnyka8874729117
Alfred Forchel85135834771
Jerzy Leszczynski7899327231
Kim R. Dunbar7447020262
Massimo Olivucci6729214880
Nitesh V. Chawla6138841365
Edward R. T. Tiekink60196721052
Bobby G. Sumpter6061923583
Wieslaw Krolikowski5950412836
Pappannan Thiyagarajan5924510650
Marek Samoc5840111171
Lutz Mädler5823227800
Rafał Weron5828512058
Network Information
Related Institutions (5)
Polish Academy of Sciences
102.1K papers, 2M citations

90% related

University of Warsaw
56.6K papers, 1.1M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

Polytechnic University of Catalonia
45.3K papers, 949.3K citations

89% related

University of Stuttgart
56.3K papers, 1.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202372
2022231
20211,579
20201,769
20191,753
20181,963