scispace - formally typeset
Search or ask a question
Institution

Wuhan University

EducationWuhan, China
About: Wuhan University is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Population & Feature extraction. The organization has 92849 authors who have published 92882 publications receiving 1691049 citations. The organization is also known as: WHU & Wuhan College.


Papers
More filters
Journal ArticleDOI
17 Jun 2020-Joule
TL;DR: In this article, the authors modified the end groups of BTP-4F from IC-2F to CPTCN-Cl to achieve near optimal energy level match, resulting in higher open-circuit voltage (VOC) and power conversion efficiency (PCE).

306 citations

Journal ArticleDOI
TL;DR: Findings from this small group of cases suggested that there was currently evidence for reactivation of SARS-CoV-2 and there might be no specific clinical characteristics to distinguish them.

306 citations

Journal ArticleDOI
TL;DR: In this article, a graph-theoretic DSR strategy incorporating microgrids that maximizes the restored load and minimizes the number of switching operations is presented, where a spanning tree search algorithm is applied to find the candidate restoration strategies by modeling micro-grids as virtual feeders.
Abstract: Distribution system restoration (DSR) is aimed at restoring loads after a fault by altering the topological structure of the distribution network while meeting electrical and operational constraints. The emerging microgrids embedded in distribution systems enhance the self-healing capability and allow distribution systems to recover faster in the event of an outage. This paper presents a graph-theoretic DSR strategy incorporating microgrids that maximizes the restored load and minimizes the number of switching operations. Spanning tree search algorithms are applied to find the candidate restoration strategies by modeling microgrids as virtual feeders and representing the distribution system as a spanning tree. Unbalanced three-phase power flow is performed to ensure that the proposed system topology satisfies all operational constraints. Simulation results based on a modified IEEE 37-node system and a 1069-node distribution system demonstrate the effectiveness of the proposed approach.

305 citations

Journal ArticleDOI
TL;DR: A generative adversarial network (GAN)-based edge-enhancement network (EEGAN) for robust satellite image SR reconstruction along with the adversarial learning strategy that is insensitive to noise is proposed.
Abstract: The current superresolution (SR) methods based on deep learning have shown remarkable comparative advantages but remain unsatisfactory in recovering the high-frequency edge details of the images in noise-contaminated imaging conditions, e.g., remote sensing satellite imaging. In this paper, we propose a generative adversarial network (GAN)-based edge-enhancement network (EEGAN) for robust satellite image SR reconstruction along with the adversarial learning strategy that is insensitive to noise. In particular, EEGAN consists of two main subnetworks: an ultradense subnetwork (UDSN) and an edge-enhancement subnetwork (EESN). In UDSN, a group of 2-D dense blocks is assembled for feature extraction and to obtain an intermediate high-resolution result that looks sharp but is eroded with artifacts and noises as previous GAN-based methods do. Then, EESN is constructed to extract and enhance the image contours by purifying the noise-contaminated components with mask processing. The recovered intermediate image and enhanced edges can be combined to generate the result that enjoys high credibility and clear contents. Extensive experiments on Kaggle Open Source Data set , Jilin-1 video satellite images, and Digitalglobe show superior reconstruction performance compared to the state-of-the-art SR approaches.

305 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress in the field of functional HBPs and their application in optics, electronics and magnetics, including light-emitting polymers, nonlinear optical materials, chemosensors, solar cells, magnetic materials, etc., and also gives some outlooks for further exploration in this field.
Abstract: As one kind of important functional material, those with advanced optical, electrical and magnetic characteristics have attracted increasing attention due to their essential and irreplaceable role in the daily life of humans. In particular, optical, electrical and magnetic hyperbranched polymers (HBPs) exhibit some unique properties, partially derived from their highly branched topological structures. This review summarizes the recent progress in the field of functional HBPs and their application in optics, electronics and magnetics, including light-emitting polymers, nonlinear optical materials, chemosensors, solar cells, magnetic materials, etc., and also gives some outlooks for further exploration in this field at the end of this paper.

305 citations


Authors

Showing all 93441 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Omar M. Yaghi165459163918
Xiang Zhang1541733117576
Yi Yang143245692268
Thomas P. Russell141101280055
Jun Chen136185677368
Lei Zhang135224099365
Chuan He13058466438
Han Zhang13097058863
Lei Zhang130231286950
Zhen Li127171271351
Chao Zhang127311984711
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Fudan University
117.9K papers, 2.6M citations

92% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023286
20221,139
20219,716
20209,672
20197,977
20186,629