scispace - formally typeset
Search or ask a question
Institution

Wuhan University

EducationWuhan, China
About: Wuhan University is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Population & Feature extraction. The organization has 92849 authors who have published 92882 publications receiving 1691049 citations. The organization is also known as: WHU & Wuhan College.


Papers
More filters
Posted Content
TL;DR: The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models.
Abstract: In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification.

288 citations

Journal ArticleDOI
TL;DR: The present work describes, for the first time, the use of a new and strong complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), which offers an important new treatment option at higher range of pH values and more particularly at pHs encountered in natural conditions.
Abstract: The present work describes, for the first time, the use of a new and strong complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS) in the homogeneous Fenton process. The effect of H(2)O(2) concentration, Fe(III)-EDDS concentration, pH value, and oxygen concentration on the homogeneous Fenton degradation of bisphenol A (BPA) used as a model pollutant, was investigated. Surprisingly, the performance of BPA oxidation in an EDDS-driven Fenton reaction was found to be much higher at near neutral or basic pH than at acidic pH. Inhibition and probe studies were conducted to ascertain the role of several radicals (e.g., (•)OH, HO(2)(•)/O(2)(•-)) on BPA degradation. This unexpected effect of pH on Fenton reaction efficiency could be due to the formation of HO(2)(•) or O(2)(•-) radicals and to the presence of different forms of the complex Fe(III)-EDDS as a function of pH. Indeed, the reduction of Fe(III)-EDDS to Fe(II)-EDDS is a crucial step that governs the formation of hydroxyl radical, mainly responsible for BPA degradation. In addition to its ability to maintain iron in soluble form, EDDS acts as a superoxide radical-promoting agent, enhancing the generation of Fe(II) (the rate limiting step) and therefore the production of (•)OH radicals. These results are very promising because they offer an important new treatment option at higher range of pH values and more particularly at pHs encountered in natural conditions.

288 citations

Journal ArticleDOI
TL;DR: There has been a tremendous leap in the diagnosis, staging and management of gastrointestinal lymphoma in the last two decades attributed to a better insight into its etiology and molecular aspect as well as the knowledge about its critical signaling pathways.
Abstract: Gastrointestinal tract is the most common extranodal site involved by lymphoma with the majority being non-Hodgkin type. Although lymphoma can involve any part of the gastrointestinal tract, the most frequent sites in order of its occurrence are the stomach followed by small intestine and ileocecal region. Gastrointestinal tract lymphoma is usually secondary to the widespread nodal diseases and primary gastrointestinal tract lymphoma is relatively rare. Gastrointestinal lymphomas are usually not clinically specific and indistinguishable from other benign and malignant conditions. Diffuse large B-cell lymphoma is the most common pathological type of gastrointestinal lymphoma in essentially all sites of the gastrointestinal tract, although recently the frequency of other forms has also increased in certain regions of the world. Although some radiological features such as bulky lymph nodes and maintenance of fat plane are more suggestive of lymphoma, they are not specific, thus mandating histopathological analysis for its definitive diagnosis. There has been a tremendous leap in the diagnosis, staging and management of gastrointestinal lymphoma in the last two decades attributed to a better insight into its etiology and molecular aspect as well as the knowledge about its critical signaling pathways.

288 citations

Journal ArticleDOI
TL;DR: This study is the first comprehensive view of TS circRNAs in human and mouse, which shed light on circRNA functions in organ development and disorders.
Abstract: Circular RNA (circRNA) is a group of RNA family generated by RNA circularization, which was discovered ubiquitously across different species and tissues. However, there is no global view of tissue specificity for circRNAs to date. Here we performed the comprehensive analysis to characterize the features of human and mouse tissue-specific (TS) circRNAs. We identified in total 302 853 TS circRNAs in the human and mouse genome, and showed that the brain has the highest abundance of TS circRNAs. We further confirmed the existence of circRNAs by reverse transcription polymerase chain reaction (RT-PCR). We also characterized the genomic location and conservation of these TS circRNAs and showed that the majority of TS circRNAs are generated from exonic regions. To further understand the potential functions of TS circRNAs, we identified microRNAs and RNA binding protein, which might bind to TS circRNAs. This process suggested their involvement in development and organ differentiation. Finally, we constructed an integrated database TSCD (Tissue-Specific CircRNA Database: http://gb.whu.edu.cn/TSCD) to deposit the features of TS circRNAs. This study is the first comprehensive view of TS circRNAs in human and mouse, which shed light on circRNA functions in organ development and disorders.

287 citations

Journal ArticleDOI
TL;DR: This work estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods and used the cohort-component method of population projection, with inputs of fertility, mortality, population, and migration data.

287 citations


Authors

Showing all 93441 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Omar M. Yaghi165459163918
Xiang Zhang1541733117576
Yi Yang143245692268
Thomas P. Russell141101280055
Jun Chen136185677368
Lei Zhang135224099365
Chuan He13058466438
Han Zhang13097058863
Lei Zhang130231286950
Zhen Li127171271351
Chao Zhang127311984711
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Fudan University
117.9K papers, 2.6M citations

92% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023286
20221,139
20219,716
20209,672
20197,977
20186,629