scispace - formally typeset
Search or ask a question
Institution

Wuhan University

EducationWuhan, China
About: Wuhan University is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Population & Feature extraction. The organization has 92849 authors who have published 92882 publications receiving 1691049 citations. The organization is also known as: WHU & Wuhan College.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors give an overview of recent developments in heterogeneous photocatalytic CO2 reduction for C1/C2 fuels production over semiconductors, which has been known for several decades as a potential feasible means to store intermittent solar energy and to recycle CO2.

240 citations

Journal ArticleDOI
01 Feb 2017-Energy
TL;DR: In this paper, a numerical approach is presented to simulate and analyze the heat extraction process in EGS, which is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks.

240 citations

Journal ArticleDOI
TL;DR: The proposed integrated fusion framework can achieve the integrated fusion of multisource observations to obtain high spatio-temporal-spectral resolution images, without limitations on the number of remote sensing sensors.
Abstract: Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio–temporal–spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio–spectral fusion, and spatio–temporal fusion, based on a single unified model, and it can achieve the integrated fusion of multisource observations to obtain high spatio–temporal–spectral resolution images, without limitations on the number of remote sensing sensors. The proposed integrated fusion framework was comprehensively tested and verified in a variety of image fusion experiments. In the experiments, a number of different remote sensing satellites were utilized, including IKONOS, the Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperspectral Digital Imagery Collection Experiment (HYDICE), and Systeme Pour l' Observation de la Terre-5 (SPOT-5). The experimental results confirm the effectiveness of the proposed method.

240 citations

Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: Negative refraction of topological surface waves hosted by a Weyl phononic crystal—an acoustic analogue of the recently discovered Weyl semimetals8–12—is reported, whereby no reflection is allowed, at certain facets of the crystal and positive refraction at others.
Abstract: Reflection and refraction of waves occur at the interface between two different media. These two fundamental interfacial wave phenomena form the basis of fabricating various wave components, such as optical lenses. Classical refraction—now referred to as positive refraction—causes the transmitted wave to appear on the opposite side of the interface normal compared to the incident wave. By contrast, negative refraction results in the transmitted wave emerging on the same side of the interface normal. It has been observed in artificial materials1–5, following its theoretical prediction6, and has stimulated many applications including super-resolution imaging7. In general, reflection is inevitable during the refraction process, but this is often undesirable in designing wave functional devices. Here we report negative refraction of topological surface waves hosted by a Weyl phononic crystal—an acoustic analogue of the recently discovered Weyl semimetals8–12. The interfaces at which this topological negative refraction occurs are one-dimensional edges separating different facets of the crystal. By tailoring the surface terminations of the Weyl phononic crystal, constant-frequency contours of surface acoustic waves can be designed to produce negative refraction at certain interfaces, while positive refraction is realized at different interfaces within the same sample. In contrast to the more familiar behaviour of waves at interfaces, unwanted reflection can be prevented in our crystal, owing to the open nature of the constant-frequency contours, which is a hallmark of the topologically protected surface states in Weyl crystals8–12. Sound waves in a specially designed crystal undergo ‘topologically protected’ negative refraction, whereby no reflection is allowed, at certain facets of the crystal and positive refraction at others.

240 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined whether and to what extent the distribution of urban park services is equitable for marginalised population in China and found that vulnerable groups are favored over more affluent citizens.

240 citations


Authors

Showing all 93441 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Omar M. Yaghi165459163918
Xiang Zhang1541733117576
Yi Yang143245692268
Thomas P. Russell141101280055
Jun Chen136185677368
Lei Zhang135224099365
Chuan He13058466438
Han Zhang13097058863
Lei Zhang130231286950
Zhen Li127171271351
Chao Zhang127311984711
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Fudan University
117.9K papers, 2.6M citations

92% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023286
20221,139
20219,716
20209,672
20197,977
20186,629