scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Photocatalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations

Journal ArticleDOI
TL;DR: This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods.
Abstract: Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references).

2,451 citations

Journal ArticleDOI
TL;DR: High photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles.
Abstract: The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H2 production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)2) as the CdS precursor. These nanosized composites reach a high H2-production rate of 1.12 mmol h–1 (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H2-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carrier...

2,212 citations

Journal ArticleDOI
TL;DR: A new composite material consisting of TiO(2) nanocrystals grown in the presence of a layered MoS(2)/graphene hybrid as a high-performance photocatalyst for H( 2) evolution without noble metals is reported.
Abstract: The production of H2 by photocatalytic water splitting has attracted a lot attention as a clean and renewable solar H2 generation system. Despite tremendous efforts, the present great challenge in materials science is to develop highly active photocatalysts for splitting of water at low cost. Here we report a new composite material consisting of TiO2 nanocrystals grown in the presence of a layered MoS2/graphene hybrid as a high-performance photocatalyst for H2 evolution. This composite material was prepared by a two-step simple hydrothermal process using sodium molybdate, thiourea, and graphene oxide as precursors of the MoS2/graphene hybrid and tetrabutylorthotitanate as the titanium precursor. Even without a noble-metal cocatalyst, the TiO2/MoS2/graphene composite reaches a high H2 production rate of 165.3 μmol h–1 when the content of the MoS2/graphene cocatalyst is 0.5 wt % and the content of graphene in this cocatalyst is 5.0 wt %, and the apparent quantum efficiency reaches 9.7% at 365 nm. This unusu...

2,201 citations

Journal ArticleDOI
TL;DR: In this article, a novel and simple method for preparing highly photoactive nanocrystalline F-doped TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in a mixed NH4F−H2O solution.
Abstract: A novel and simple method for preparing highly photoactive nanocrystalline F--doped TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in a mixed NH4F−H2O solution. The prepared F--doped TiO2 powders were characterized by differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV−vis absorption spectroscopy, photoluminescence spectra (PL), transmission electron microscopy (TEM), and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results showed that the crystallinity of anatase was improved upon F- doping. Moreover, fluoride ions not only suppressed the formation of brookite phase but also prevented phase transition of anatase to rutile. The F--doped TiO2 samples exhibited stronger absorption in the UV−visible range with a red shift in the band gap transition. The photocatalytic activity of F--doped TiO2 powders prep...

2,074 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076