scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that increasing the K(+) concentration leads to a considerable enhancement of the lattice oxygen activity in OMS-2 nanorods.
Abstract: OMS-2 nanorods with tunable K+ concentration were prepared by a facile hydrothermal redox reaction of MnSO4, (NH4)2S2O8, and (NH4)2SO4 at 120 °C by adding KNO3 at different KNO3/MnSO4 molar ratios. The OMS-2 nanorod catalysts are characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption and desorption, inductively coupled plasma, and X-ray photoelectron spectrometry. The effect of K+ concentration on the lattice oxygen activity of OMS-2 is theoretically and experimentally studied by density functional theory calculations and CO temperature-programmed reduction. The results show that increasing the K+ concentration leads to a considerable enhancement of the lattice oxygen activity in OMS-2 nanorods. An enormous decrease (ΔT50 = 89 °C; ΔT90 > 160 °C) in reaction temperatures T50 and T90 (corresponding to 50 and 90% benzene conversion, respectively) for benzene oxidation has been achieved by increasing the K+ concentration in the K+-doped OMS-2 nanorods due to the considerable enhan...

201 citations

Journal ArticleDOI
TL;DR: An ingenious design of a one-step method is proposed to prepare a bimetallic sulfide composite with a coaxial carbon coating layer, simply enabled by ZIF-8 introduction, that significantly improve ionic and electronic diffusion kinetics.
Abstract: Engineering novel electrode materials with unique architectures has a significant impact on tuning the structural/electrochemical properties for boosting the performance of secondary battery systems. Herein, starting from well-organized WS2 nanorods, an ingenious design of a one-step method is proposed to prepare a bimetallic sulfide composite with a coaxial carbon coating layer, simply enabled by ZIF-8 introduction. Rich sulfur vacancies and WS2 /ZnS heterojunctions can be simultaneously developed, that significantly improve ionic and electronic diffusion kinetics. In addition, a homogeneous carbon protective layer around the surface of the composite guarantees an outstanding structural stability, a reversible capacity of 170.8 mAh g-1 after 5000 cycles at a high rate of 5 A g-1 . A great potential in practical application is also exhibited, where a full cell based on the WS2- x /ZnS@C anode and the P2-Na2/3 Ni1/3 Mn1/3 O2 cathode can maintain a reversible capacity of 89.4 mAh g-1 after 500 cycles at 1 A g-1 . Moreover, the underlying electrochemical Na storage mechanisms are illustrated in detail by theoretical calculations, electrochemical kinetic analysis, and operando X-ray diffraction characterization.

201 citations

Journal ArticleDOI
TL;DR: In this article, hollow spherical mesoporous particles with tunable particle size and shell thickness were synthesized using latex templates and a silica precursor in a weakly basic ethanol−water mixture.
Abstract: Monodispersed hollow spherical mesoporous particles with tunable particle size and shell thickness were readily synthesized using latex templates and a silica precursor in a weakly basic ethanol−water mixture.

201 citations

Journal ArticleDOI
TL;DR: A hierarchical hollow FeV composite is reported, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential, low Tafel slope, and a considerable durability.
Abstract: Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm−2 catalytic current density), low Tafel slope of 36.7 mV dec−1, and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.

201 citations

Journal ArticleDOI
TL;DR: In this article, a trace-amount phosphorus and sodium co-doped g-C 3 N 4 is prepared by polymerizing the mixed precursors of melamine and sodium tripolyphosphate.

200 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076