scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Photocatalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: The dual-emissive N, S co-doped carbon dots (N, S-CDs) with a long emission wavelength were synthesized via solvothermal method as mentioned in this paper.
Abstract: The dual-emissive N, S co-doped carbon dots (N, S-CDs) with a long emission wavelength were synthesized via solvothermal method. The N, S-CDs possess relatively high photoluminescence (PL) quantum yield (QY) (35.7%) towards near-infrared fluorescent peak up to 648 nm. With the advanced characterization techniques including X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), etc. It is found that the doped N, S elements play an important role in the formation of high QY CDs. The N, S-CDs exist distinct pH-sensitive feature with reversible fluorescence in a good linear relationship with pH values in the range of 1.0–13.0. What is more, N, S-CDs can be used as an ultrasensitive Ag+ probe sensor with the resolution up to 0.4 μM. This finding will expand the application of as prepared N, S-CDs in sensing and environmental fields.

166 citations

Journal ArticleDOI
TL;DR: In this paper, a composite Li7La3Zr2O12 (LLZO) ceramic-based solid electrolyte has been successfully incorporated into the polyethylene oxide (PEO) polymer by tape casting.

166 citations

Journal ArticleDOI
TL;DR: This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs.
Abstract: In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 2(4) full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P = 20 MPa, T = 35°C, flow rate of solution = 0.5 mL·min(-1), concentration of solution = 0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs.

166 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the nonlinear flow characteristics at low Reynolds number through rough-walled fractures subjected to a wide range of confining pressures (1.0-30.0 MPa).

166 citations

Journal ArticleDOI
TL;DR: In this paper, a polymer precursor was used to synthesize barium hexaferrite (BaFe12O19) powders with hexagonal crystal structure using barium acetate and ferric acetylacetonate as precursors.

166 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076