scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Photocatalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper designed a yolk@shell structured SiOx/C anode with semi-graphitic carbon coatings on the exterior and interior surfaces (Si Ox/C-CVD) through sol-gel process, selective etching and chemical vapor deposition.

152 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive description of the F-mediated synthesis and unique properties of fluorinated semiconductor photocatalysts, in particular titanium dioxide (TiO(2).

152 citations

Journal ArticleDOI
Shuang Yang1, Jun Wang1, Siqi Huo1, Mei Wang1, Liufeng Cheng1 
TL;DR: In this article, a novel additive tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) was successfully synthesized.
Abstract: A novel additive, tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT), was successfully synthesized. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance. DOPO-TMT was blended with epoxy resins to prepare flame-retardant thermosets. The flame-retardant properties were evaluated using limited oxygen index (LOI), vertical burning (UL94), and cone calorimeter tests. The results indicated that DOPO-TMT exhibited excellent flame-retardant effect. The flame-retardant mechanism was studied by thermogravimeric analysis (TGA), pyrolysis-gas chromatography/mass spectrometry, and thermogravimetric analysis/infrared spectrometry (TGA-FTIR) coupled with the morphology and chemical analysis of the char residues. The results disclosed that DOPO-TMT exerted biphase flame-retardant effect. In gaseous-phase, DOPO-TMT released phosphorus- and nitrogen-containing free radicals with quenching effect under thermal decomposition. The morphologies o...

152 citations

Journal ArticleDOI
TL;DR: In this article, Fe3+ ions were in situ doped into the TiO2 thin films and the results showed that at 400 °C, the film became photoactive due to the formation of anatase phase and at 500 °C the film showed the highest photocatalytic activity due to an optimal Fe 3+ ion concentration in the film.

152 citations

Journal ArticleDOI
Yuan Li1, Xiaoyong Wu1, Jun Li1, Kai Wang1, Gaoke Zhang1 
TL;DR: In this paper, a series of unique g-C3N4@CsxWO3 nanocomposites are prepared via ultrasonic assisted strategy, exhibiting great ultraviolet isolating, visible light (Vis) penetrating and near-infrared (NIR) heat-shielding features which are superior over that of tin-doped indium oxide (ITO).
Abstract: Multifunctional smart window coating is expected for indoor decontaminating and energy-saving, because of the highly desired for comfortable and green quality of indoor conditions. However, normal smart window coating only absorbs UV and NIR light to transform them into heat energy without maximum exploitation of solar energy. Herein, a series of unique g-C3N4@CsxWO3 nanocomposites are prepared via ultrasonic assisted strategy, exhibiting great ultraviolet (UV) isolating, visible light (Vis) penetrating and near-infrared (NIR) heat-shielding features which is superior over that of tin-doped indium oxide (ITO). More importantly, these composites display excellent VOCs (HCHO or/and toluene) decomposing properties under the full spectrum of UV, visible and NIR lights irradiation. In this case, the shielded NIR light by composites is further utilized instead of wasting as heat. On the other hand, deep analysis revealed that the high efficiency of photocatalytic decomposing of VOCs by g-C3N4@CsxWO3 nanocomposites depends on two sides: firstly, g-C3N4@CsxWO3 constructs a nice Z-scheme structure to promote the separation of charge carriers and then enhance photocatalytic oxidation (PCO) effectively; secondly, the small polaron can jump from localized states (LS) to conduction band (CB) of CsxWO3 under irradiation of NIR (730 nm–1100 nm) and result in a NIR-catalytic reduction. This work provides some indications into the fabrication of the energy-conservation and depollution catalysts as smart window coating with excellent optical characterization and photocatalysis performance.

152 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076