scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Photocatalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: This review introduces the most popular techniques currently applied in bioprinting, as well as the various biopprinting processes, and the composition of bioink including scaffolds and cells are described.
Abstract: Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone. In this review, the authors introduce the most popular techniques currently applied in bioprinting, as well as the various bioprinting processes. In addition, the composition of bioink including scaffolds and cells are described. Furthermore, the most current applications in organ and tissue bioprinting are introduced. The authors also discuss the challenges we are currently facing and the great potential of bioprinting. This technology has the capacity not only in complex tissue structure fabrication based on the converted medical images, but also as an efficient tool for drug discovery and preclinical testing. One of the most promising future advances of bioprinting is to develop a standard medical device with the capacity of treating patients directly on the repairing site, which requires the development of automation and robotic technology, as well as our further understanding of biomaterials and stem cell biology to integrate various printing mechanisms for multi-phasic tissue engineering.

142 citations

Journal ArticleDOI
TL;DR: The RI sensitivity of the MMF-PCF-MMF structure is found to be higher than that of multimode fiber-single mode fiber-multimode fiber (MMF-SMF- MMF) structure, which means it has a broad application prospect in medical, environmental monitoring and manufacturing industry.
Abstract: Figure 1(c) in [Y. Wang, Optics Express 26, 1910 (2018)] contains an error and is corrected in this erratum.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the NASICON structured Na3V2(PO4)3 manifests simultaneous Zn2+/Na+ intercalation/de-intercalation in a single component electrolyte (2.0m Zn(CF3SO3)2).

142 citations

Journal ArticleDOI
TL;DR: In this paper, a novel composite aerogel with porous Li4Ti5O12 (PLTO) nanofibers confined in a highly conductive 3D-interconnected graphene framework was designed and fabricated for Na storage.
Abstract: Sodium storage in both solid–liquid and solid–solid interfaces is expected to extend the horizon of sodium-ion batteries, leading to a new strategy for developing high-performance energy-storage materials. Here, a novel composite aerogel with porous Li4Ti5O12 (PLTO) nanofibers confined in a highly conductive 3D-interconnected graphene framework (G-PLTO) is designed and fabricated for Na storage. A high capacity of 195 mA h g−1 at 0.2 C and super-long cycle life up to 12 000 cycles are attained. Electrochemical analysis shows that the intercalation-based and interfacial Na storage behaviors take effect simultaneously in the G-PLTO composite aerogel. An integrated Na storage mechanism is proposed. This study ascribes the excellent performance to the unique structure, which not only offers short pathways for Na+ diffusion and conductive networks for electron transport, but also guarantees plenty of PLTO–electrolyte and PLTO–graphene interfacial sites for Na+ adsorption.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional/three-dimensional (2D/3D) hierarchical composite is hydrothermally synthesized by assembling verticallyaligned ZnIn2S4 (ZIS) nanowall arrays on nitrogen-doped graphene foams (NGF).
Abstract: Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization, particularly in the near-infrared (NIR) region, are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks. Herein, a novel two-demensional/three-demensional (2D/3D) hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2S4 (ZIS) nanowall arrays on nitrogen-doped graphene foams (NGF). The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction. At 273 K and 1 atm , the ZIS/NGF composite with 1.0 wt% NGF achieves a comparably high CO2-to-N2 selectivity of 30.1, with an isosteric heat of CO2 adsorption of 48.2 kJ mol−1 . And in the absence of cocatalysts and sacrificial agents, the ZIS/NGF composite with cyclability converts CO2 into CH4, CO and CH3OH under simulated solar light illumination, with the respective evolution rates about 9.1, 3.5, and 5.9 times higher than that of the pristine ZIS. In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.

142 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076