scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: The surface properties of carbon materials are very important since many complex physical and chemical reactions take place on their surfaces as discussed by the authors, and X-ray photoelectron spectroscopy (XPS) test is one of...
Abstract: The surface properties of carbon materials are very important since many complex physical and chemical reactions take place on their surfaces. X-ray photoelectron spectroscopy (XPS) test is one of ...

362 citations

Journal ArticleDOI
TL;DR: In this paper, the durability and degradation behavior of Nafion NR111 proton exchange membranes (PEMs) are investigated in detail under various mechanical, chemical and polarization conditions.

362 citations

Journal ArticleDOI
TL;DR: Hierarchically structured zeolites have gained much attention due to their highly attractive properties as discussed by the authors, which integrate at least two levels of porosity and present the advantages associated with each level, from selectivity to mass transport.
Abstract: Zeolites with hierarchically porous structures have garnered much attention due to their highly attractive properties. Hierarchically structured zeolites integrate at least two levels of porosity and present the advantages associated with each level of porosity, from selectivity to mass transport. They are categorized into three distinctly different types according to their hierarchical porosities: mesostructured zeolites, macrostructured zeolites, and micro–meso–macroporous structured zeolites. Most importantly, hierarchically structured zeolites offer an effective solution to the mass transport problem associated with conventional zeolites in catalysed reactions because they combine the catalytic features of micropores and the improved accessibility and increased molecular transport related to the addition of several porosities within a single body. In recent years, many strategies have been successfully developed to synthesize hierarchically structured zeolitic materials. This feature article thoroughly summarizes recent developments that have been achieved in the field of hierarchically structured zeolites, with the main focus on the synthesis strategies that are available, with examples given from the literature. Available approaches are reviewed for the preparation of micro–mesoporous structured zeolites, micro–macroporous structured zeolites and micro–meso–macroporous structured zeolites. Furthermore, the enhanced mass transport properties of hierarchically structured zeolites, featuring additional larger pores in addition to the crystalline micropores, have also been described. The significant improvement in catalytic properties in a range of important reactions resulting from enhanced mass transport properties have also been discussed through several representative cases. It is the intent of this work to stimulate intuition into the optimal design of related hierarchically organized zeolites with desired characteristics.

360 citations

Journal ArticleDOI
16 Jan 2019-Joule
TL;DR: In this article, europium doping of CsPbI2Br stabilizes the α phase of this inorganic perovskite at room temperature, and the authors demonstrate a maximum power-conversion efficiency of 13.71% for an inorganic PSC with the C'sPb0.95Eu0.05I 2Br perovsite.

360 citations

Journal ArticleDOI
TL;DR: In this paper, the first proton-electron transfer is found to be the rate-determining step for the whole process, with an activation barrier of only 0.64 eV vs.
Abstract: Density functional theory investigations of M3C2 transition metal carbides from the d2, d3, and d4 series suggest promising N2 capture behaviour, displaying spontaneous chemisorption energies that are larger than those for the capture of CO2 and H2O in d3 and d4 MXenes. The chemisorbed N2 becomes activated, promoting its catalytic conversion into NH3. The first proton–electron transfer is found to be the rate-determining step for the whole process, with an activation barrier of only 0.64 eV vs. SHE for V3C2.

360 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076