scispace - formally typeset
Search or ask a question
Institution

Wuhan University of Technology

EducationWuhan, China
About: Wuhan University of Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Microstructure & Photocatalysis. The organization has 40384 authors who have published 36724 publications receiving 575695 citations. The organization is also known as: WUT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a large-scale in situ growth of 3D hierarchical tubular CuO/other metal oxides core/shell heterostructure arrays that are directly grown on Cu foam is presented.

213 citations

Journal ArticleDOI
TL;DR: A diverse set of ortho-C(sp2)-H functionalizations of benzaldehyde substrates are reported using the transient directing group strategy, significantly expanding the scope for metal-catalyzed C-H functionalization of benzaldehydes.
Abstract: Pd-catalyzed C–H functionalizations promoted by transient directing groups remain largely limited to C–H arylation only. Herein, we report a diverse set of ortho-C(sp2)–H functionalizations of benzaldehyde substrates using the transient directing group strategy. Without installing any auxiliary directing group, Pd(II)-catalyzed C–H arylation, chlorination, bromination, and Ir(III)-catalyzed amidation, could be achieved on benzaldehyde substrates. The transient directing groups formed in situ via imine linkage can override other coordinating functional groups capable of directing C–H activation or catalyst poisoning, significantly expanding the scope for metal-catalyzed C–H functionalization of benzaldehydes. The utility of this approach is demonstrated through multiple applications, including late-stage diversification of a drug analogue.

213 citations

Journal ArticleDOI
TL;DR: In this article, Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts were prepared by the sol-gel method and as-prepared samples were characterized with X-ray diffraction (XRD), XPS and N2 adsorption-desorption measurements.

212 citations

Journal ArticleDOI
TL;DR: It is shown that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs.
Abstract: Crystalline solids dominate the field of metal-organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal-ligand connectivity of crystalline MOFs, which connects their mechanical properties to their starting chemical composition. The transfer of functionality from crystal to glass points toward new routes to tunable, functional hybrid glasses.

212 citations

Journal ArticleDOI
TL;DR: In this paper, a Ru doped three-dimensional flower-like bimetallic phosphide on nickel foam (Ru-NiCoP/NF) derived from Co leaf-like zeolitic imidazolate framework (Co ZIF-L) was constructed for water splitting.
Abstract: The resplendent prospect of water splitting hydrogen production technology makes the development of efficient and stable hydrogen/oxygen evolution reactions (HER/OER) bifunctional catalysts become urgent. Herein, inspired by the density function theory (DFT) calculation result that Ru-dopants have a climbing effect on both OER and HER processes, we construct a Ru doped three-dimensional flower-like bimetallic phosphide on nickel foam (Ru-NiCoP/NF) derived from Co leaf-like zeolitic imidazolate framework (Co ZIF-L), effectively driving both OER (216mV@20 mA cm−2) and HER (44mV@10 mA cm−2) in 1 M KOH solutions. The overall water splitting device assembled by using Ru-NiCoP/NF as both anode and cathode shows an ultralow cell voltage of 1.515 V to obtain 10 mA cm−2. Interestingly, almost 100 % Faradic yield is achieved for the overall water splitting. This work represents a significant addition to exploring a new class of transition metal phosphides with outstanding performance in producing hydrogen via electrochemical water electrolysis.

212 citations


Authors

Showing all 40691 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Charles M. Lieber165521132811
Dongyuan Zhao160872106451
Yu Huang136149289209
Han Zhang13097058863
Chao Zhang127311984711
Bo Wang119290584863
Jianjun Liu112104071032
Hong Wang110163351811
Jimmy C. Yu10835036736
Søren Nielsen10580645995
Liqiang Mai10461639558
Bei Cheng10426033672
Feng Li10499560692
Qi Li102156346762
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

91% related

Beihang University
73.5K papers, 975.6K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023140
2022599
20213,894
20203,665
20193,551
20183,076