scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Proceedings ArticleDOI
04 Oct 2008
TL;DR: An image super-resolution approach using a novel generic image prior - gradient profile prior, which is a parametric prior describing the shape and the sharpness of the image gradients is proposed.
Abstract: In this paper, we propose an image super-resolution approach using a novel generic image prior - gradient profile prior, which is a parametric prior describing the shape and the sharpness of the image gradients. Using the gradient profile prior learned from a large number of natural images, we can provide a constraint on image gradients when we estimate a hi-resolution image from a low-resolution image. With this simple but very effective prior, we are able to produce state-of-the-art results. The reconstructed hi-resolution image is sharp while has rare ringing or jaggy artifacts.

928 citations

Proceedings Article
05 Dec 2016
TL;DR: Experiments on MRI image reconstruction under different sampling ratios in k-space demonstrate that the proposed novel ADMM-Net algorithm significantly improves the baseline ADMM algorithm and achieves high reconstruction accuracies with fast computational speed.
Abstract: Compressive Sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR image from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and computational speed, in this paper, we propose a novel deep architecture, dubbed ADMM-Net. ADMM-Net is defined over a data flow graph, which is derived from the iterative procedures in Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing a CS-based MRI model. In the training phase, all parameters of the net, e.g., image transforms, shrinkage functions, etc., are discriminatively trained end-to-end using L-BFGS algorithm. In the testing phase, it has computational overhead similar to ADMM but uses optimized parameters learned from the training data for CS-based reconstruction task. Experiments on MRI image reconstruction under different sampling ratios in k-space demonstrate that it significantly improves the baseline ADMM algorithm and achieves high reconstruction accuracies with fast computational speed.

928 citations

Journal ArticleDOI
TL;DR: It is demonstrated that H19 modulates let-7 availability by acting as a molecular sponge, and this lncRNA is identified as an important regulator of the majorLet-7 family of microRNAs.

920 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper introduced a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity, which is capable of not only reducing the image noise level but also trying to keep the critical information at the same time.
Abstract: The continuous development and extensive use of computed tomography (CT) in medical practice has raised a public concern over the associated radiation dose to the patient. Reducing the radiation dose may lead to increased noise and artifacts, which can adversely affect the radiologists’ judgment and confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve the diagnostic performance, which is a challenging problem due to its ill-posed nature. Over the past years, various low-dose CT methods have produced impressive results. However, most of the algorithms developed for this application, including the recently popularized deep learning techniques, aim for minimizing the mean-squared error (MSE) between a denoised CT image and the ground truth under generic penalties. Although the peak signal-to-noise ratio is improved, MSE- or weighted-MSE-based methods can compromise the visibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory and promises to improve the performance of GAN. The perceptual loss suppresses noise by comparing the perceptual features of a denoised output against those of the ground truth in an established feature space, while the GAN focuses more on migrating the data noise distribution from strong to weak statistically. Therefore, our proposed method transfers our knowledge of visual perception to the image denoising task and is capable of not only reducing the image noise level but also trying to keep the critical information at the same time. Promising results have been obtained in our experiments with clinical CT images.

916 citations

Journal ArticleDOI
TL;DR: A two-stage learning method inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data for intelligent diagnosis of machines that reduces the need of human labor and makes intelligent fault diagnosis handle big data more easily.
Abstract: Intelligent fault diagnosis is a promising tool to deal with mechanical big data due to its ability in rapidly and efficiently processing collected signals and providing accurate diagnosis results. In traditional intelligent diagnosis methods, however, the features are manually extracted depending on prior knowledge and diagnostic expertise. Such processes take advantage of human ingenuity but are time-consuming and labor-intensive. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed for intelligent diagnosis of machines. In the first learning stage of the method, sparse filtering, an unsupervised two-layer neural network, is used to directly learn features from mechanical vibration signals. In the second stage, softmax regression is employed to classify the health conditions based on the learned features. The proposed method is validated by a motor bearing dataset and a locomotive bearing dataset, respectively. The results show that the proposed method obtains fairly high diagnosis accuracies and is superior to the existing methods for the motor bearing dataset. Because of learning features adaptively, the proposed method reduces the need of human labor and makes intelligent fault diagnosis handle big data more easily.

915 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,655
202111,508
202011,183
201910,012
20188,215