scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: A new method using mild chemical reactions and enzymatic oxidation allows nondestructive sequencing of 5-methylcytosine and 5-hydroxymethylcytOSine with base-level resolution, enabling higher quality, more comprehensive and cheaper methylome analyses.
Abstract: Bisulfite sequencing has been the gold standard for mapping DNA modifications including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) for decades1–4. However, this harsh chemical treatment degrades the majority of the DNA and generates sequencing libraries with low complexity2,5,6. Here, we present a bisulfite-free and base-level-resolution sequencing method, TET-assisted pyridine borane sequencing (TAPS), for detection of 5mC and 5hmC. TAPS combines ten-eleven translocation (TET) oxidation of 5mC and 5hmC to 5-carboxylcytosine (5caC) with pyridine borane reduction of 5caC to dihydrouracil (DHU). Subsequent PCR converts DHU to thymine, enabling a C-to-T transition of 5mC and 5hmC. TAPS detects modifications directly with high sensitivity and specificity, without affecting unmodified cytosines. This method is nondestructive, preserving DNA fragments over 10 kilobases long. We applied TAPS to the whole-genome mapping of 5mC and 5hmC in mouse embryonic stem cells and show that, compared with bisulfite sequencing, TAPS results in higher mapping rates, more even coverage and lower sequencing costs, thus enabling higher quality, more comprehensive and cheaper methylome analyses. A new method using mild chemical reactions and enzymatic oxidation allows nondestructive sequencing of 5-methylcytosine and 5-hydroxymethylcytosine with base-level resolution.

231 citations

Journal ArticleDOI
01 Feb 2015-Small
TL;DR: A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam that exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability.
Abstract: A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability.

230 citations

Journal ArticleDOI
TL;DR: In this article, the elastic strain field is controlled statically or dynamically by varying the six-dimensional elastic strain as continuous variables, which gives new meaning to Richard Feynman's 1959 statement, "There is plenty of room at the bottom".
Abstract: “Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant fraction of their ideal strength without inelastic relaxation by plasticity or fracture. Large elastic strains, up to ∼10%, can be generated by epitaxy or by external loading on small-volume or bulk-scale nanomaterials and can be spatially homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and chemical properties of a material, such as electronic, optical, magnetic, phononic, and catalytic properties, by varying the six-dimensional elastic strain as continuous variables. By controlling the elastic strain field statically or dynamically, a much larger parameter space opens up for optimizing the functional properties of materials, which gives new meaning to Richard Feynman’s 1959 statement, “there’s plenty of room at the bottom.”

230 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the botanical description, ethnopharmacology, phytochemistry, biological activities, and toxicity of Eucommia ulmoides will provide helpful data for further studies as well as the commercial exploitation of this traditional medicine.

230 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: This work designs WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones, and shows that WILL achieves competitive performance comparing with traditional approaches.
Abstract: Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past two decades. Most radio-based solutions require a process of site survey, in which radio signatures are collected and stored for further comparison and matching. Site survey involves intensive costs on manpower and time. In this work, we study unexploited RF signal characteristics and leverage user motions to construct radio floor plan that is previously obtained by site survey. On this basis, we design WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones. WILL is deployed in a real building covering over 1600m2, and its deployment is easy and rapid since site survey is no longer needed. The experiment results show that WILL achieves competitive performance comparing with traditional approaches.

230 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,655
202111,508
202011,183
201910,012
20188,215