scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an access threshold-based secrecy mobile association policy was proposed to associate each user with the BS providing the maximum truncated average received signal power beyond a threshold, and the connection probability and secrecy probability of a randomly located user were investigated.
Abstract: The heterogeneous cellular network (HCN) is a promising approach to the deployment of 5G cellular networks. This paper comprehensively studies physical layer security in a multitier HCN where base stations (BSs), authorized users, and eavesdroppers are all randomly located. We first propose an access threshold-based secrecy mobile association policy that associates each user with the BS providing the maximum truncated average received signal power beyond a threshold. Under the proposed policy, we investigate the connection probability and secrecy probability of a randomly located user and provide tractable expressions for the two metrics. Asymptotic analysis reveals that setting a larger access threshold increases the connection probability while decreases the secrecy probability. We further evaluate the network-wide secrecy throughput and the minimum secrecy throughput per user with both connection and secrecy probability constraints. We show that introducing a properly chosen access threshold significantly enhances the secrecy throughput performance of a HCN.

227 citations

Journal ArticleDOI
TL;DR: In this article, the characteristics of pyrolysis, gasification and combustion of coals and chars in oxyfuel combustion are described using non-isothermal thermogravimetric analysis.

226 citations

Journal ArticleDOI
TL;DR: This work develops a nucleation-controlled solution method to grow large size high-quality Cs3Bi2I9 perovskite single crystals (PSCs) for high performance X-ray detection and imaging devices that can operate at 100 °C.
Abstract: The organic-inorganic hybrid lead halide perovskites have emerged as a series of star materials for solar cells, lasers and detectors. However, the issues raised by the toxic lead element and marginal stability due to the volatile organic components have severely limited their potential applications. In this work, we develop a nucleation-controlled solution method to grow large size high-quality Cs3Bi2I9 perovskite single crystals (PSCs). Using the technique, we harvest some centimeter-sized single crystals and achieved high device performance. We find that X-ray detectors based on PSCs exhibit high sensitivity of 1652.3 μC Gyair−1 cm−2 and very low detectable dose rate of 130 nGyair s−1, both desired in medical diagnostics. In addition, its outstanding thermal stability inspires us to develop a high temperature X-ray detector with stable response at up to 100 °C. Furthermore, PSCs exhibit high X-ray imaging capability thanks to its negligible signal drifting and extremely high stability. Organic-inorganic hybrid halide perovskites have been emerged as promising candidates for X-ray detectors while toxicity and instability are known issues. Here, Zhang et al. grow large size lead-free single crystals for high performance X-ray detection and imaging devices that can operate at 100 °C.

226 citations

Journal ArticleDOI
05 Jul 2019-Science
TL;DR: It is found that submicrometer-size magnesium samples exhibit high plasticity that is far greater than for their bulk counterparts, which should allow development of high-ductility magnesium and other metal alloys.
Abstract: Lightweight magnesium alloys are attractive as structural materials for improving energy efficiency in applications such as weight reduction of transportation vehicles. One major obstacle for widespread applications is the limited ductility of magnesium, which has been attributed to [Formula: see text] dislocations failing to accommodate plastic strain. We demonstrate, using in situ transmission electron microscope mechanical testing, that [Formula: see text] dislocations of various characters can accommodate considerable plasticity through gliding on pyramidal planes. We found that submicrometer-size magnesium samples exhibit high plasticity that is far greater than for their bulk counterparts. Small crystal size usually brings high stress, which in turn activates more [Formula: see text] dislocations in magnesium to accommodate plasticity, leading to both high strength and good plasticity.

226 citations

Journal ArticleDOI
TL;DR: Advances in the use of different NIR dyes in tumor-specific imaging, photothermal, and photodynamic therapies are discussed and Limitations and prospects associated with NIRdyes in diagnostic and therapeutic application are reviewed.

226 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,657
202111,508
202011,183
201910,012
20188,215