scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the rational design and fabrication of NiCo2O4 nanosheets supported on reduced graphene oxide (denoted as rGO/NiCo 2O4) is presented as a novel anode material for highly efficient and reversible lithium storage.
Abstract: Hybrid nanostructures based on graphene and transition metal oxides hold great promise as high-performance electrode materials for next-generation lithium-ion batteries. In this work, the rational design and fabrication of NiCo2O4 nanosheets supported on reduced graphene oxide (denoted as rGO/NiCo2O4) is presented as a novel anode material for highly efficient and reversible lithium storage. A solution method is applied to grow Ni-Co precursor nanosheets on rGO, in which the addition of trisodium citrate is found crucial to guide the formation of uniform Ni-Co precursor nanosheets. Subsequent thermal treatment results in formation of crystalline NiCo2O4 nanosheets on rGO without damaging the morphology. The interconnected NiCo2O4 nanosheets form hierarchically porous films on both sides of rGO. Such a hybrid nanostructure would effectively promote the charge transport and withstand volume variation upon prolonged charge/discharge cycling. As a result, the rGO/NiCo2O4 nanocomposite demonstrates high reversible capacities of 954.3 and 656.5 mAh g–1 over 50 cycles at current densities of 200 and 500 mA g–1 respectively, and remarkable capacity retention at increased current densities.

225 citations

Journal ArticleDOI
Yongping Liang1, Baojun Chen1, Meng Li1, Jiahui He1, Zhanhai Yin1, Baolin Guo1 
TL;DR: The results demonstrated the better wound healing effect of these multiantibacterial injectable conductive hydrogel in infectious skin tissue defect repair, indicating their great potential for infected wound healing.

225 citations

Journal ArticleDOI
TL;DR: The fundamental embryonic structure of deformation twins is revealed using in situ mechanical testing of magnesium single crystals in a transmission electron microscope, shedding light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.
Abstract: We have revealed the fundamental embryonic structure of deformation twins using in situ mechanical testing of magnesium single crystals in a transmission electron microscope. This structure consists of an array of twin-related laths on the scale of several nanometers. A computational model demonstrates that this structure should be a generic feature at the incipient stage of deformation twinning when there are correlated nucleation events. Our results shed light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.

225 citations

Journal ArticleDOI
TL;DR: This work provides important guidance to improve the performance of non-fullerene polymer solar cells by combining a large- bandgap polymer PffT2-FTAZ-2DT with a small-bandgap acceptor IEIC.
Abstract: A 7.3% efficiency non-fullerene polymer solar cell is realized by combining a large-bandgap polymer PffT2-FTAZ-2DT with a small-bandgap acceptor IEIC. The complementary absorption of donor polymer and small-molecule acceptor is responsible for the high-performance of the solar-cell device. This work provides important guidance to improve the performance of non-fullerene polymer solar cells.

225 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: A new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS) is proposed.
Abstract: Multispectral images (MSI) can help deliver more faithful representation for real scenes than the traditional image system, and enhance the performance of many computer vision tasks. In real cases, however, an MSI is always corrupted by various noises. In this paper, we propose a new tensor-based denoising approach by fully considering two intrinsic characteristics underlying an MSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). In specific, we construct a new tensor sparsity measure, called intrinsic tensor sparsity (ITS) measure, which encodes both sparsity insights delivered by the most typical Tucker and CANDECOMP/ PARAFAC (CP) low-rank decomposition for a general tensor. Then we build a new MSI denoising model by applying the proposed ITS measure on tensors formed by non-local similar patches within the MSI. The intrinsic GCS and NSS knowledge can then be efficiently explored under the regularization of this tensor sparsity measure to finely rectify the recovery of a MSI from its corruption. A series of experiments on simulated and real MSI denoising problems show that our method outperforms all state-of-the-arts under comprehensive quantitative performance measures.

225 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,657
202111,508
202011,183
201910,012
20188,215