scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
Pei Wei1, Zhengying Wei1, Zhen Chen1, Jun Du1, He Yuyang1, Junfeng Li1, Yatong Zhou1 
TL;DR: In this article, the authors investigated the influence of the laser power, scanning speed, and hatch spacing on the densification behavior and microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy.

223 citations

Journal ArticleDOI
TL;DR: The ionogel is somewhat hygroscopic, but the transducers remain stable after a million cycles of excitation in a dry oven and in air, and the nonvolatility of the ionogels enable theTransducers to be used in open air.
Abstract: Large deformation of soft materials is harnessed to provide functions in the nascent field of soft machines. This paper describes a new class of systems enabled by highly stretchable, transparent, stable ionogels. We synthesize an ionogel by polymer- izing acrylic acid in ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ((C2mim)(EtSO4)). The ionogel exhibits desired attributes of adequate conductivity (0.22 S m −1 ), low elastic modulus (∼3 kPa), large rupturing stretch (∼4.6), and negligible hysteresis and degradation after cyclic stretches of large amplitude. Using the ionogel and a dielectric elastomer, we fabricate electromechanical transducers that achieve a voltage-induced areal strain of 140%. The ionogel is somewhat hygroscopic, but the transducers remain stable after a million cycles of excitation in a dry oven and in air. The transparency of the ionogels enable the transducers with conductors placed in the path of light, and the nonvolatility of the ionogels enable the transducers to be used in open air.

222 citations

Journal ArticleDOI
TL;DR: A three-dimensional convolutional neural network (3-D CNN) based method for fall detection is developed, which only uses video kinematic data to train an automatic feature extractor and could circumvent the requirement for large fall dataset of deep learning solution.
Abstract: Fall detection is an important public healthcare problem. Timely detection could enable instant delivery of medical service to the injured. A popular nonintrusive solution for fall detection is based on videos obtained through ambient camera, and the corresponding methods usually require a large dataset to train a classifier and are inclined to be influenced by the image quality. However, it is hard to collect fall data and instead simulated falls are recorded to construct the training dataset, which is restricted to limited quantity. To address these problems, a three-dimensional convolutional neural network (3-D CNN) based method for fall detection is developed, which only uses video kinematic data to train an automatic feature extractor and could circumvent the requirement for large fall dataset of deep learning solution. 2-D CNN could only encode spatial information, and the employed 3-D convolution could extract motion feature from temporal sequence, which is important for fall detection. To further locate the region of interest in each frame, a long short-term memory (LSTM) based spatial visual attention scheme is incorporated. Sports dataset Sports-1 M with no fall examples is employed to train the 3-D CNN, which is then combined with LSTM to train a classifier with fall dataset. Experiments have verified the proposed scheme on fall detection benchmark with high accuracy as 100%. Superior performance has also been obtained on other activity databases.

222 citations

Journal ArticleDOI
TL;DR: A coupled volume-of-fluid and level set (VOSET) method, which combines the advantages and overcomes the disadvantages of VOF and LS methods, is presented for computing incompressible two-phase flows.

222 citations

Journal ArticleDOI
TL;DR: Findings show that melatonin attenuates the development of diabetes‐induced cardiac dysfunction by preventing mitochondrial fission through SIRT1‐PGC1α pathway, which negatively regulates the expression of Drp1 directly.
Abstract: Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes-induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes-induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes-induced cardiac dysfunction by inhibiting dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ)-induced diabetic mice, but not in SIRT1-/- diabetic mice. In high glucose-exposed H9c2 cells, melatonin treatment increased the expression of SIRT1 and PGC-1α and inhibited Drp1-mediated mitochondrial fission and mitochondria-derived superoxide production. In contrast, SIRT1 or PGC-1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1-mediated mitochondrial fission in a SIRT1/PGC-1α-dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC-1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi-1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes-induced cardiac dysfunction by preventing mitochondrial fission through SIRT1-PGC1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.

222 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,655
202111,508
202011,183
201910,012
20188,215